Phần câu hỏi bài 6 trang 69 Vở bài tập toán 8 tập 1Giải phần câu hỏi bài 6 trang 69 VBT toán 8 tập 1. hân thức đối của phân thức A/B là biểu thức... Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Câu 21. Phân thức đối của phân thức \(\dfrac{A}{B}\) là biểu thức \(\begin{array}{l}(A)\,\,\dfrac{A}{{ - B}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(B)\,\,\dfrac{{ - A}}{{ - B}}\\(C)\,\, - \dfrac{{ - A}}{B}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(D)\,\, - \dfrac{A}{{ - B}}\end{array}\) Phương pháp giải: Hai phân thức được gọi là đối nhau nếu tổng của chúng bằng \(0\). Phân thức đối của phân thức \( \dfrac{A}{B}\) được kí hiệu là \( -\dfrac{A}{B}\) Ta có: \( -\dfrac{A}{B} =\dfrac{-A}{B}\) và \( -\dfrac{-A}{B}=\dfrac{A}{B}\) Lời giải chi tiết: Phân thức đối của phân thức \(\dfrac{A}{B}\) là \( \dfrac{A}{-B}\) Chọn A. Câu 22. Phân thức đối của phân thức \(\dfrac{{ - A}}{B}\) là biểu thức \(\begin{array}{l}(A)\,\, - \dfrac{A}{B}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(B)\,\,\dfrac{A}{B}\\(C)\,\,\dfrac{A}{{ - B}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(D)\,\, - \dfrac{{ - A}}{{ - B}}\end{array}\) Phương pháp giải: Hai phân thức được gọi là đối nhau nếu tổng của chúng bằng \(0\). Phân thức đối của phân thức \( \dfrac{A}{B}\) được kí hiệu là \( -\dfrac{A}{B}\) Ta có: \( -\dfrac{A}{B} =\dfrac{-A}{B}\) và \( -\dfrac{-A}{B}=\dfrac{A}{B}\) Lời giải chi tiết: Phân thức đối của phân thức \(\dfrac{{ - A}}{B}\) là \( - \dfrac{{ - A}}{B} = \dfrac{A}{B}\) Chọn B. Câu 23. Hiệu \(\dfrac{A}{B} - \dfrac{C}{D}\) bằng biểu thức \(\begin{array}{l}(A)\,\,\dfrac{A}{B} + \left( {\dfrac{{ - C}}{{ - D}}} \right)\\(B)\,\,\dfrac{A}{B} - \left( {\dfrac{{ - C}}{D}} \right)\\(C)\,\,\dfrac{A}{B} + \left( {\dfrac{C}{{ - D}}} \right)\\(D)\,\,\dfrac{C}{D} + \left( {\dfrac{{ - A}}{B}} \right)\end{array}\) Phương pháp giải: Quy tắc: Muốn trừ phân thức \( \dfrac{A}{B}\) cho phân thức \( \dfrac{C}{D}\), ta cộng \( \dfrac{A}{B}\) với phân thức đối của \( \dfrac{C}{D}\) Vậy: \( \dfrac{A}{B}-\dfrac{C}{D}=\dfrac{A}{B}+\left( { - \dfrac{C}{D}} \right)\). Lời giải chi tiết: \(\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{A}{B} + \dfrac{{ - C}}{D} = \dfrac{A}{B} + \dfrac{C}{{ - D}}\) Chọn C. Câu 24. Cho các biểu thức sau: \(\begin{array}{l}\dfrac{{ - 9}}{{3 - x}} + \dfrac{{ - 3x}}{{3 - x}};\\\dfrac{{3x}}{{x - 2}} + \dfrac{6}{{x - 2}};\\\dfrac{{3x}}{{x - 2}} + \dfrac{{ - 6}}{{x - 2}};\\\dfrac{{3x}}{{3 - x}} + \dfrac{{ - 9}}{{3 - x}}.\end{array}\) Hãy chọn ra những biểu thức thích hợp để điền vào chỗ trống trong hai đẳng thức sau: \(\begin{array}{l}\dfrac{{3x}}{{x - 2}} - \dfrac{6}{{x - 2}} = ...\\\dfrac{{ - 9}}{{3 - x}} - \dfrac{{3x}}{{x - 3}} = ...\end{array}\) Phương pháp giải: Quy tắc: Muốn trừ phân thức \( \dfrac{A}{B}\) cho phân thức \( \dfrac{C}{D}\), ta cộng \( \dfrac{A}{B}\) với phân thức đối của \( \dfrac{C}{D}\) Vậy: \( \dfrac{A}{B}-\dfrac{C}{D}=\dfrac{A}{B}+\left( { - \dfrac{C}{D}} \right)\). Lời giải chi tiết: \(\begin{array}{l}\dfrac{{3x}}{{x - 2}} - \dfrac{6}{{x - 2}} = \dfrac{{3x}}{{x - 2}} + \dfrac{{ - 6}}{{x - 2}}\\\dfrac{{ - 9}}{{3 - x}} - \dfrac{{3x}}{{x - 3}} = \dfrac{{ - 9}}{{3 - x}} + \dfrac{{3x}}{{ - \left( {x - 3} \right)}} \\= \dfrac{{ - 9}}{{3 - x}} + \dfrac{{3x}}{{3 - x}} = \dfrac{{3x}}{{3 - x}} + \dfrac{{ - 9}}{{3 - x}}\end{array}\) Loigiaihay.com
Quảng cáo
|