Giải mục 2 trang 8, 9 SGK Toán 8 – Chân trời sáng tạo

Cho biết đại lượng (y) được tính theo đại lượng (x) như sau: (y = 2x + 3)

Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Khoa học tự nhiên

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

HĐ 2

Video hướng dẫn giải

Cho biết đại lượng \(y\) được tính theo đại lượng \(x\) như sau: \(y = 2x + 3\)

 

a) Tính \(y\) khi \(x = 4\).

b) Cho \(x\) một giá trị tùy ý, tính giá trị tương ứng của \(y\).

Phương pháp giải:

Thay các giá trị của \(x\) và công thức hàm số để tính \(y\).

Lời giải chi tiết:

Với \(x = 4\) ta được. \(y = 2.4 + 3 = 11\)

Với \(x = 6\) ta được. \(y = 2.6 + 3 = 15\)

\(x\)

1

2

3

4

6

\(y = 2x + 3\)

5

7

9

11

15

TH 2

Video hướng dẫn giải

a) Các giá trị tương ứng của hai đại lượng \(x\) và \(y\) được cho trong bảng sau:

 

Đại lượng \(y\) có phải là hàm số của đại lượng \(x\) không?

b) Cho hàm số \(y = f\left( x \right) = {x^2}\)

- Tính \(f\left( 2 \right);f\left( { - 3} \right)\).

- Lập bảng giá trị của hàm số với \(x\) lần lượt bằng \( - 3; - 2; - 1;0;1;2;3\).

Phương pháp giải:

a) Dựa vào định nghĩa của hàm số:

Nếu đại lượng \(y\) phụ thuộc vào một đại lượng thay đổi \(x\) sao cho với mỗi giá trị của \(x\) ta luôn xác định được duy nhất một giá trị tương ứng của \(y\) thì \(y\) được gọi làm số của biến số \(x\).

b) Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có \(y = f\left( a \right)\) thì \(f\left( a \right)\) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).

Đối với hàm số \(y = f\left( x \right) = {x^2}\), khi đó, \(x = a \Rightarrow f\left( a \right) = {a^2}\).

Lời giải chi tiết:

a) Đại lượng \(y\) là hàm số của đại lượng \(x\) vì với mỗi giá trị của \(x\) ta chỉ xác nhận được duy nhất một giá trị \(y\) tương ứng.

b) \(f\left( 2 \right) = {2^2} = 4;f\left( { - 3} \right) = {\left( { - 3} \right)^2} = 9\)

Ta có: \(f\left( { - 2} \right) = {\left( { - 2} \right)^2} = 4;f\left( { - 1} \right) = {\left( { - 1} \right)^2} = 1\)

\(f\left( 0 \right) = {0^2} = 0;f\left( 1 \right) = {1^2} = 1\)

\(f\left( 2 \right) = {2^2} = 4;f\left( 3 \right) = {3^2} = 9\)

\(x\)

–3

–2

–1

0

1

2

3

\(f\left( x \right)\)

9

4

1

0

1

4

9

VD 2

Video hướng dẫn giải

Cho \(C = f\left( d \right)\)là hàm số mô tả mối quan hệ giữa chu vi \(C\) và đường kính \(d\) của một đường tròn. Tìm công thức \(f\left( d \right)\) và lập bảng giá trị của hàm số ứng với \(d\) lần lượt bằng \(1;2;3;4\) (theo đơn vị cm).

Phương pháp giải:

Chu vi đường tròn bằng độ dài đường kính của đường tròn đó nhân với số \(\pi \). Từ đây chúng ta tìm ra công thức của \(f\left( x \right)\).

Lời giải chi tiết:

Ta có: \(C = \pi .d\) trong đó, \(C\) là chu vi đường tròn; \(d\) là đường kính và \(\pi \) là số pi.

Do đó, \(f\left( d \right) = \pi .d\)

Với \(d = 1 \Rightarrow f\left( 1 \right) = \pi .1 = \pi \);

\(d = 2 \Rightarrow f\left( 2 \right) = \pi .2 = 2\pi \);

\(d = 3 \Rightarrow f\left( 3 \right) = \pi .3 = 3\pi \);

\(d = 4 \Rightarrow f\left( 4 \right) = \pi .4 = 4\pi \).

Ta thu được bảng sau:

\(d\)

1

2

3

4

\(f\left( d \right)\)

\(\pi \)

\(2\pi \)

\(3\pi \)

\(4\pi \)

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close