Giải bài tập 4.31 trang 36 SGK Toán 12 tập 2 - Cùng khám phá

Một ô tô đang chạy với vận tốc \(20{\mkern 1mu} {\rm{m/s}}\) thì người lái đạp phanh, từ thời điểm đó ô tô chuyển động với vận tốc \(v(t) = - 5t + 20{\mkern 1mu} {\rm{(m/s)}}\), trong đó \(t\) là khoảng thời gian tính bằng giây kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển thêm một quãng đường dài bao nhiêu mét?

Quảng cáo

Đề bài

Một ô tô đang chạy với vận tốc \(20{\mkern 1mu} {\rm{m/s}}\) thì người lái đạp phanh, từ thời điểm đó ô tô chuyển động với vận tốc \(v(t) =  - 5t + 20{\mkern 1mu} {\rm{(m/s)}}\), trong đó \(t\) là khoảng thời gian tính bằng giây kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển thêm một quãng đường dài bao nhiêu mét?

Phương pháp giải - Xem chi tiết

Quãng đường xe di chuyển được tính bằng tích phân của vận tốc theo thời gian.

Ta tìm thời gian xe dừng lại bằng cách giải phương trình \(v(t) = 0\).

Sau đó, tính quãng đường bằng cách tích phân vận tốc trên khoảng thời gian từ \(t = 0\) đến thời điểm xe dừng.

Lời giải chi tiết

Xác định thời gian dừng:

Từ phương trình vận tốc:

\(v(t) =  - 5t + 20\)

Ta cho \(v(t) = 0\) để tìm thời gian dừng:

\(0 =  - 5t + 20\)

\(t = 4{\mkern 1mu} \) (giây)

Quãng đường

\(s\) được tính bằng tích phân của vận tốc theo thời gian:

\(s = \int_0^4 v (t){\mkern 1mu} dt = \int_0^4 {( - 5t + 20)} {\mkern 1mu} dt\)

\(s = \left[ { - \frac{{5{t^2}}}{2} + 20t} \right]_0^4 = \left( { - \frac{{5 \times {4^2}}}{2} + 20 \times 4} \right) - \left( { - \frac{{5 \times {0^2}}}{2} + 20 \times 0} \right)\)

\(s = ( - 40 + 80) - 0 = 40{\mkern 1mu} {\rm{m}}\)

Ô tô sẽ di chuyển thêm quãng đường \(40{\mkern 1mu} {\rm{m}}\) trước khi dừng hẳn.

  • Giải bài tập 4.32 trang 37 SGK Toán 12 tập 2 - Cùng khám phá

    Một bồn chứa nước bắt đầu bị rỉ từ đáy. Tốc độ nước chảy ra từ đáy bồn tại thời điểm \(t\) phút được cho bởi hàm số \(V'(t) = 200 - 4t\)(lít/phút) với \(0 \le t \le 50\) và \(V(t)\) là hàm số cho biết thể tích nước trong bồn tại thời điểm \(t\). Tính lượng nước chảy ra khỏi bồn trong 10 phút đầu tiên từ khi bồn bị rỉ nước.

  • Giải bài tập 4.33 trang 37 SGK Toán 12 tập 2 - Cùng khám phá

    Trong kinh tế, nếu hàm số \(C(x)\) là tổng chi phí khi sản xuất \(x\) đơn vị hàng hóa nào đó thì tốc độ thay đổi tức thời của chi phí theo số lượng sản phẩm được sản xuất \(C'(x)\) được gọi là chi phí biên. Chi phí biên \(C'(n)\) là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ \(n\) sản phẩm lên \(n + 1\) sản phẩm. Giả sử chi phí biên khi sản xuất \(x\) sản phẩm của một công ty là \(C'(x) = 2x + 80\) (USD/ sản phẩm) thì tổng chi phí sản xuất tăng lên bao nhiêu nếu sản phẩm sản xuất ra tăng từ

  • Giải bài tập 4.34 trang 37 SGK Toán 12 tập 2 - Cùng khám phá

    Tốc độ tăng cân nặng của một bé gái trong độ tuổi từ 0 đến 36 tháng được ước tính bởi hàm số \(f'(t) = 0,00093{t^2} - 0,04792t + 0,76806{\mkern 1mu} \) (kg/tháng) với \(f(t)\) là cân nặng của bé gái lúc \(t\) tháng tuổi. Hãy ước tính cân nặng của một bé gái 5 tháng tuổi, biết cân nặng trung bình của bé gái khi mới sinh là \(3,3{\mkern 1mu} {\rm{kg}}\).

  • Giải bài tập 4.35 trang 37 SGK Toán 12 tập 2 - Cùng khám phá

    Cho \(F(x)\) là một nguyên hàm của hàm số \(f(x) = \frac{2}{x}\), biết \(F(1) = 2\). Giá trị của \(F(3)\) bằng: A. \(2 + 2\ln 3\) B. \(2 + \ln 3\) C. \(2 - 2\ln 3\) D. \(2 - \ln 3\)

  • Giải bài tập 4.36 trang 37 SGK Toán 12 tập 2 - Cùng khám phá

    Họ tất cả các nguyên hàm của hàm số \(f(x) = \frac{{4{x^3} + 1}}{{{x^2}}}\) trên khoảng \((0; + \infty )\) là: A. \(2{x^2} - \frac{1}{x} + C\) B. \(2{x^2} + \frac{1}{x} + C\) C. \(4 - \frac{2}{{{x^3}}} + C\) D. \(4 + \frac{2}{{{x^3}}} + C\)

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close