Giải bài 9.28 trang 69 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Một chiếc hộp đựng 6 quả cầu trắng, 4 quả cầu đỏ và 2 quả cầu đen. Chọn ngẫu nhiên 6 quả cầu. Tính xác suất để chọn được 3 quả trắng, 2 quả đỏ và 1 quả đen.

Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Quảng cáo

Đề bài

Một chiếc hộp đựng 6 quả cầu trắng, 4 quả cầu đỏ và 2 quả cầu đen. Chọn ngẫu nhiên 6 quả cầu. Tính xác suất để chọn được 3 quả trắng, 2 quả đỏ và 1 quả đen.

Phương pháp giải - Xem chi tiết

Sử dụng công thức xác suất cổ điển \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\).

Lời giải chi tiết

 Có tất cả 6+4+2=12 quả cầu

Lấy ngẫu nhiên 6 trong 12 quả có \(n\left( \Omega  \right) = C_{12}^6 = 924\) cách.

Gọi E là biến cố: "Chọn được 3 quả trắng, 2 quả đỏ và 1 quả đen.

Chọn 3 quả cầu trắng từ 6 quả cầu trắng, có \(C_6^3 = 20\) cách chọn.

Chọn 2 quả cầu đỏ từ 4 quả cầu đỏ, có \(C_4^2 = 6\)cách chọn.

Chọn 1 quả cầu đen từ 2 quả cầu đen, có 2 cách chọn.

Theo quy tắc nhân ta có: n(E) = 20.6.2 = 240.

Do đó \(P\left( E \right) = \frac{{240}}{{924}} = \frac{{20}}{{77}}\)

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close