Giải bài 9.21 trang 55 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC của tam giác ABC sao cho (AM.AB = AN.AC).

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên

Quảng cáo

Đề bài

Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC của tam giác ABC sao cho \(AM.AB = AN.AC\).

a) Chứng minh rằng $\Delta AMN\backsim \Delta ACB$

b) Lấy E, F lần lượt là trung điểm của MN, BC. Chứng minh rằng \(\widehat {EAB} = \widehat {FAC}\)

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về định lý (trường hợp đồng dạng cạnh – góc – cạnh) để chứng minh: Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và góc tạo bởi các cặp cạnh đó bằng nhau thì hai tam giác đó đồng dạng với nhau.

Lời giải chi tiết

a) Vì \(AM.AB = AN.AC\) nên \(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\)

Tam giác AMN và tam giác ABC có:

\(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\), góc A chung

Do đó, $\Delta AMN\backsim \Delta ACB$ (c – g – c)

b) Vì $\Delta AMN\backsim \Delta ACB$(cmt) nên \(\widehat {AMN} = \widehat C\)

và \(\frac{{AM}}{{AC}} = \frac{{MN}}{{CB}}\)

Mà E, F lần lượt là trung điểm của MN, BC nên \(MN = 2ME,BC = 2FC\)

Do đó: \(\frac{{AM}}{{AC}} = \frac{{MN}}{{CB}} = \frac{{2ME}}{{2FC}} = \frac{{ME}}{{FC}}\)

Tam giác MAE và tam giác CAF có:

\(\widehat {AME} = \widehat C\) (cmt), \(\frac{{AM}}{{AC}} = \frac{{ME}}{{FC}}\) (cmt)

Do đó, $\Delta AME\backsim \Delta ACF\left( c-g-c \right)$ nên \(\widehat {EAB} = \widehat {FAC}\) (hai góc tương ứng)

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close