Giải bài 8.27 trang 59 SBT toán 10 - Kết nối tri thức

Giá trị của biểu thức ({left( {sqrt 5 + 1} right)^5} - {left( {sqrt 5 - 1} right)^5}) bằng

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Quảng cáo

Đề bài

Giá trị của biểu thức \({\left( {\sqrt 5  + 1} \right)^5} - {\left( {\sqrt 5  - 1} \right)^5}\) bằng

 A. 252

 B. 352

 C. 452

 D. 425

Phương pháp giải - Xem chi tiết

Áp dụng công thức khai triển:

\({(a + b)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3}\)

\(+ 5a{b^4} + {b^5}\).

Lời giải chi tiết

 Ta có: \({\left( {\sqrt 5  + 1} \right)^5} - {\left( {\sqrt 5  - 1} \right)^5}\)

\( = \left[ {{{\left( {\sqrt 5 } \right)}^5} + 5{{\left( {\sqrt 5 } \right)}^4} + 10{{\left( {\sqrt 5 } \right)}^3} + 10{{\left( {\sqrt 5 } \right)}^2} + 5.\sqrt 5  + {1^5}} \right]\)

\( - \left[ {{{\left( {\sqrt 5 } \right)}^5} + 5{{\left( {\sqrt 5 } \right)}^4}.( - 1) + 10{{\left( {\sqrt 5 } \right)}^3}{{( - 1)}^2}} \right.\)

\( + 10{\left( {\sqrt 5 } \right)^2}{( - 1)^3}\left. { + 5.\sqrt 5 .{{( - 1)}^4} + {{( - 1)}^5}} \right]\)

\( = \left[ {{{\left( {\sqrt 5 } \right)}^5} + 5{{\left( {\sqrt 5 } \right)}^4} + 10{{\left( {\sqrt 5 } \right)}^3} + 10{{\left( {\sqrt 5 } \right)}^2} + 5.\sqrt 5  + {1^5}} \right]\)

\( - \left[ {{{\left( {\sqrt 5 } \right)}^5} - 5{{\left( {\sqrt 5 } \right)}^4} + 10{{\left( {\sqrt 5 } \right)}^3} - 10{{\left( {\sqrt 5 } \right)}^2} + 5.\sqrt 5  - {1^5}} \right]\)

\( = {\left( {\sqrt 5 } \right)^5} + 5{\left( {\sqrt 5 } \right)^4} + 10{\left( {\sqrt 5 } \right)^3} + 10{\left( {\sqrt 5 } \right)^2} + 5.\sqrt 5  + {1^5}\)

\( - {\left( {\sqrt 5 } \right)^5} + 5{\left( {\sqrt 5 } \right)^4} - 10{\left( {\sqrt 5 } \right)^3} + 10{\left( {\sqrt 5 } \right)^2} - 5.\sqrt 5  + {1^5}\)

\( = 10{\left( {\sqrt 5 } \right)^4} + 20{\left( {\sqrt 5 } \right)^2} + 2\)

\( = 10.25 + 20.5 + 2 = 352\).

Chọn B.

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!

close