Giải bài 8 trang 22 SBT toán 10 - Chân trời sáng tạoNgười ta thử nghiệm ném một quả bóng trên Mặt Trăng. Nếu quả bóng được ném lên từ độ cao \({h_0}\) (m) so với bề mặt của Mặt Trăng với vận tốc \({v_0}\) (m/s) thì độ cao của quả bóng sau t giây được cho bởi hàm số \(h\left( t \right) = - \frac{1}{2}g{t^2} + {v_0}t + {h_0}\) với \(g = 1,625\)m/s2 là gia tốc trọng trường của Mặt Trăng Quảng cáo
Đề bài Người ta thử nghiệm ném một quả bóng trên Mặt Trăng. Nếu quả bóng được ném lên từ độ cao \({h_0}\) (m) so với bề mặt của Mặt Trăng với vận tốc \({v_0}\) (m/s) thì độ cao của quả bóng sau t giây được cho bởi hàm số \(h\left( t \right) = - \frac{1}{2}g{t^2} + {v_0}t + {h_0}\) với \(g = 1,625\)m/s2 là gia tốc trọng trường của Mặt Trăng a) Biết độ cao ban đầu của quả bóng vào các thời điểm 8 giây và 12 giây lần lượt là 30 m và 5 m, hãy tìm vận tốc ném; độ cao ban đầu của quả bóng và viết công thức \(h\left( t \right)\) b) Quả bóng đạt độ cao trên 29 m trong bao nhiêu giây? Lưu ý: Đáp số làm tròn đến hàng phần trăm. Lời giải chi tiết a) Tại t=8 thì h=30 và tại t=12 thì h=5 nên ta có: \(\left\{ \begin{array}{l}30 = - \frac{1}{2}.1,{625.8^2} + {v_0}.8 + {h_0}\\5 = - \frac{1}{2}.1,{625.12^2} + {v_0}.12 + {h_0}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}8{v_0} + {h_0} = 82\\12{v_0} + {h_0} = 122\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{v_0} = 10\\{h_0} = 2\end{array} \right.\) Suy ra phương trình miêu tả độ cao của bóng so với mặt đất là \(h\left( t \right) = - \frac{{13}}{{16}}{t^2} + 10t + 2\) Vậy \({h_{_0}}\) và \({v_0}\) lần lượt là 2 m và 10 m/s b) Chiều cao của quả bóng trên 4 m tương đương \(h\left( t \right) > 29 \Leftrightarrow - \frac{{13}}{{16}}{t^2} + 10t + 2 > 29\) Giải bất phương trình ta có \( - \frac{{13}}{{16}}{t^2} + 10t - 27 > 0 \Leftrightarrow 4 < t < \frac{{108}}{{13}}\) Khoảng thời gian quả bóng ở độ cao trên 29m là: \(\frac{{108}}{{13}} - 4 = \frac{{56}}{{13}} \approx 4,31\) (giây) Vậy bóng đạt độ cao trên 29 m trong khoảng thời gian gần bằng 4,31 giây
Quảng cáo
|