Giải bài 8 trang 101 SBT toán 10 - Chân trời sáng tạo

An, Bình, Cường và 2 bạn nữa xếp ngẫu nhiên thành 1 hàng ngang để chụp ảnh. Tính xác suất của các biến cố:

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Quảng cáo

Đề bài

An, Bình, Cường và 2 bạn nữa xếp ngẫu nhiên thành 1 hàng ngang để chụp ảnh. Tính xác suất của các biến cố:

a) “An và Bình đứng ở hai đầu hàng”

b) “Bình và Cường đứng cạnh nhau”

c) “An, Bình, Cường đứng cạnh nhau”

Phương pháp giải - Xem chi tiết

Phép thử có không gian mẫu gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là 1 biến cố

Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega  \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)

Lời giải chi tiết

a) Số cách xếp 5 bạn thành một hàng ngang là: \(n\left( \Omega  \right) = 5!\)

Gọi A là biến cố: “An và Bình đứng ở hai đầu hàng”

+ An và Bình đứng 2 đầu hàng: 2 cách sắp xếp (An trước Bình sau hoặc ngược lại)

+ 3 bạn còn lại: \(3!\) cách sắp xếp

=> \(n\left( A \right) = 2.3!\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{2.3!}}{{5!}} = \frac{1}{{10}}\)

b) Gọi B là biến cố: “Bình và Cường đứng cạnh nhau”

Coi Bình và Cường thành 1 phần tử trong hàng.

=> Khi đó xếp 5 người coi là xếp 4 phần tử => có \(4!\) cách sắp xếp

Mỗi cách xếp này tương ứng với 2 cách xếp 5 người (Bình trước, Cường sau hoặc ngược lại)

=> \(n\left( B \right) = 2.4!\)

\( \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{{2.4!}}{{5!}} = \frac{1}{{10}}\)

c) Gọi C là biến cố: “An, Bình, Cường đứng cạnh nhau”

Coi An, Bình và Cường là 1 phần tử của hàng. Riêng nhóm này có \(3!\) cách xếp

=> Khi đó hàng có 3 phần tử => có \(3!\) cách sắp xếp

=> \(n\left( C \right) = 3!.3!\)

\( \Rightarrow P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega  \right)}} = \frac{{3!.3!}}{{5!}} = \frac{3}{5}\)

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close