Giải bài 7.47 trang 42 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Cho hình chóp \(S.ABCD\)có tất cả các cạnh đều bằng \(a\), gọi \(O\)là giao điểm của \(AC\) và \(BD\).

Quảng cáo

Đề bài

Cho hình chóp \(S.ABCD\)có tất cả các cạnh đều bằng \(a\), gọi \(O\)là giao điểm của \(AC\) và \(BD\). Khoảng cách giữa hai đường thẳng \(AB\) và \(SD\) bằng

A. \(\frac{{a\sqrt 6 }}{3}\).

B. \(\frac{{a\sqrt 3 }}{2}\).

C. .\(\frac{{a\sqrt 6 }}{3}\).

D. \(\frac{{a\sqrt 6 }}{2}\).

Phương pháp giải - Xem chi tiết

Gọi \(M,N\) lần lượt là trung điểm của các cạnh\(AB,CD\); \(H\) là hình chiếu vuông góc của \(O\) trên \(SN.\)

Vì \(AB{\rm{//}}CD\) nên\(d\left( {AB,SD} \right) = d\left( {AB,(SCD)} \right) = d\left( {M,(SCD)} \right) = 2d\left( {O,(SCD)} \right)\)

Ta có \(\left\{ \begin{array}{l}CD \bot SO\\CD \bot ON\end{array} \right. \Rightarrow CD \bot (SON) \Rightarrow CD \bot OH\)

Khi đó \(\left\{ \begin{array}{l}CD \bot OH\\OH \bot SN\end{array} \right. \Rightarrow OH \bot (SCD) \Rightarrow d\left( {O;(SCD)} \right) = OH.\)

Tam giác \(SOD\) vuông tại \(O\) nên \(O{S^2} = S{D^2} - O{D^2}\)

Tam giác \(SON\) vuông tại \(O\) nên \(\frac{1}{{O{H^2}}} = \frac{1}{{O{N^2}}} + \frac{1}{{O{S^2}}} \Rightarrow OH\)

Vậy \(d\left( {AB,SD} \right) = 2OH\).

Lời giải chi tiết

Gọi \(M,N\) lần lượt là trung điểm của các cạnh\(AB,CD\); \(H\) là hình chiếu vuông góc của \(O\) trên \(SN.\)

Vì \(AB{\rm{//}}CD\) nên \(d\left( {AB,SD} \right) = d\left( {AB,(SCD)} \right) = d\left( {M,(SCD)} \right) = 2d\left( {O,(SCD)} \right)\)

Ta có \(\left\{ \begin{array}{l}CD \bot SO\\CD \bot ON\end{array} \right. \Rightarrow CD \bot (SON) \Rightarrow CD \bot OH\)

Khi đó \(\left\{ \begin{array}{l}CD \bot OH\\OH \bot SN\end{array} \right. \Rightarrow OH \bot (SCD) \Rightarrow d\left( {O;(SCD)} \right) = OH.\)

Tam giác \(SOD\) vuông tại \(O\) nên \(O{S^2} = S{D^2} - O{D^2} = {a^2} - {\left( {\frac{{a\sqrt 2 }}{2}} \right)^2} = \frac{{{a^2}}}{2}\)

Tam giác \(SON\) vuông tại \(O\) nên \(\frac{1}{{O{H^2}}} = \frac{1}{{O{N^2}}} + \frac{1}{{O{S^2}}} = \frac{1}{{\frac{{{a^2}}}{4}}} + \frac{1}{{\frac{{{a^2}}}{2}}} = \frac{6}{{{a^2}}} \Rightarrow OH = \frac{a}{{\sqrt 6 }} = \frac{{a\sqrt 6 }}{6}\)

Vậy \(d\left( {AB,SD} \right) = 2OH = \frac{{a\sqrt 6 }}{3}\).

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close