Giải bài 73 trang 85 sách bài tập toán 8 – Cánh diều

Cho tam giác \(ABC\) vuông tại \(A\), có đường phân giác \(AD\). Vẽ hình vuông \(MNPQ\) ở đó \(M\) thuộc cạnh \(AB,N\) thuộc cạnh \(AC,P\) và \(Q\) thuộc cạnh \(BC\).

Quảng cáo

Đề bài

Cho tam giác \(ABC\) vuông tại \(A\), có đường phân giác \(AD\). Vẽ hình vuông \(MNPQ\) ở đó \(M\) thuộc cạnh \(AB,N\) thuộc cạnh \(AC,P\) và \(Q\) thuộc cạnh \(BC\). Gọi \(E\) và \(F\) lần lượt là giao điểm của \(BN\) và \(MQ\); \(CM\) và \(NP\) (Hình 60). Chứng minh:

 

a)      \(DE\) song song với \(AC\);

b)     \(DE=DF\).

Phương pháp giải - Xem chi tiết

Tam giác \(A'B'C'\) gọi là đồng dạng với tam giác \(ABC\) nếu:

\(\widehat{A'}=\widehat{A},\widehat{B'}=\widehat{B},\widehat{C'}=\widehat{C}\) ; \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{A'C'}{AC}\).

Kí hiệu là \(\Delta A'B'C'\backsim \Delta ABC\).

Tỉ số các cạnh tương ứng \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=k\) gọi là tỉ số đồng dạng.

Lời giải chi tiết

a)      Ta có \(\frac{BE}{EN}=\frac{BQ}{QP}=\frac{BQ}{MQ}=\frac{AB}{AC}=\frac{BD}{DC}\) suy ra \(DE//NC\) hay \(DE//AC\).

b)     Do \(DE//AC\) nên \(\frac{DE}{CN}=\frac{BD}{BC}\) hay \(DE=\frac{BD}{BC}.CN\)

Tương tự: \(DF=\frac{CD}{BC}.BM\). Suy ra \(\frac{DE}{DF}=\frac{BD}{CD}.\frac{CN}{BM}\).

Mặt khác, \(\frac{BD}{CD}=\frac{AB}{AC}\) và \(\frac{CN}{BM}=\frac{AC}{AB}\) nên \(\frac{DE}{DF}=1\) hay \(DE=DF\).

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close