Giải Bài 7.26 trang 34 sách bài tập toán 7 - Kết nối tri thức với cuộc sốngThực hiện các phép chia sau: Quảng cáo
Đề bài Thực hiện các phép chia sau: \(a)\left( { - 4{x^5} + 3{x^3} - 2{x^2}} \right):\left( { - 2{x^2}} \right)\) \(b)\left( {0,5{x^3} - 1,5{x^2} + x} \right):0,5x;\) \(c)\left( {{x^3} + 2{x^2} - 3x + 1} \right):\dfrac{1}{3}{x^2}\). Phương pháp giải - Xem chi tiết Chia từng hạng tử của đa thức bị chia cho đa thức chia rồi tính tổng các thương vừa thu được Lời giải chi tiết \(\begin{array}{l}a)\\\left( { - 4{x^5} + 3{x^3} - 2{x^2}} \right):\left( { - 2{x^2}} \right)\\ = \left( { - 4{x^5}} \right):\left( { - 2{x^2}} \right) + 3{x^3}:\left( { - 2{x^2}} \right) + \left( { - 2{x^2}} \right):\left( { - 2{x^2}} \right)\\ = 2{x^3} - \dfrac{3}{2}x + 1\end{array}\) \(\begin{array}{l}b)\\\left( {0,5{x^3} - 1,5{x^2} + x} \right):0,5x\\ = \left( {0,5{x^3}:0.5x} \right) - \left( {1,5{x^2}:0,5x} \right) + \left( {x:0,5x} \right)\\ = {x^2} - 3x + 2\end{array}\) \(\begin{array}{l}c)\\\left( {{x^3} + 2{x^2} - 3x + 1} \right):\dfrac{1}{3}{x^2}\\ = \left( {3x + 6} \right).\dfrac{1}{3}{x^2} + \left( { - 3x + 1} \right)\end{array}\) Do đa thức -3x + 1 có bậc là 1, nhỏ hơn bậc 2 của đa thức chia nên đẳng thức này chứng tỏ 3x + 6 là thương và -3x + 1 là dư trong phép chia đã cho.
Quảng cáo
|