Giải bài 7 trang 45 sách bài tập toán 10 - Chân trời sáng tạoChọn 4 trong số 3 học sinh nam và 5 học sinh nữ tham gia một cuộc thi. Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Quảng cáo
Đề bài Chọn 4 trong số 3 học sinh nam và 5 học sinh nữ tham gia một cuộc thi. a) Nếu chọn 2 nam và 2 nữ thì có bao nhiêu cách chọn b) Nếu trong số học sinh được chọn nhất thiết phải có học sinh nam A và học sinh nữ B thì có bao nhiêu cách chọn c) Nếu phải có ít nhất một trong hai học sinh A và B được chọn, thì có bao nhiêu cách chọn? d) Nếu trong 4 học sinh được chọn phải có cả học sinh nam và học sinh nữu thì có bao nhiêu cách chọn? Lời giải chi tiết a) Có 2 công đoạn: + Chọn 2 nam trong 3 nam: \(C_3^2 = 3\) cách chọn + Chọn 2 nữ trongg 5 nữ: \(C_5^2 = 10\) cách chọn => Theo quy tắc nhân, có 3x10 = 30 cách chọn b) Cần chọn 4 người, trong đó đã có A và B. Vậy ta chỉ cần chọn thêm 2 trong số 3+5-2=6 học sinh còn lại. + Chọn 2 học sinh còn lại trong 6 học sinh còn lại: \(C_6^2 = 15\) cách chọn Vậy có 15 cách chọn c) Có 3 trường hợp xảy ra: có cả A và B; chỉ có A; chỉ có B. + Có cả A và B: theo ý b) ta có 15 cách chọn + Chỉ có A: Ta cần chọn thêm 3 bạn từ số HS còn lại (không tính cả A và B). Tức là chọn 3 trong 6 học sinh, có \(C_6^3 = 20\) cách chọn + Chỉ có B: Ta cần chọn thêm 3 bạn từ số HS còn lại (không tính cả B và A). Tức là chọn 3 trong 6 học sinh, có \(C_6^3 = 20\) cách chọn Theo quy tắc cộng, ta có 15+20+20=55 cách chọn. d) Cần chọn 4 người, mà chỉ có 3 nam nên chắc chẵn sẽ có HS nữ. các trường hợp có thể xảy ra là: Có 1 nam; có 2 nam; có 3 nam + Chọn 1 nam và 3 nữ: Chọn 1 nam (trong 3 nam): có 3 cách Chọn 3 nữ trong 5 nữ: có \(C_5^3 = 10\) cách chọn => do đó có 3.10= 30 cách chọn 1 nam và 3 nữ + Chọn 2 nam và 2 nữ: Chọn 2 nam (trong 3 nam): có \(C_3^2 =3\) cách Chọn 2 nữ trong 5 nữ: có \(C_5^2 = 10\) cách chọn => do đó có 3.10= 30 cách chọn 2 nam và 2 nữ + Chọn 3 nam và 1 nữ: Chọn 3 nam (trong 3 nam): có 1 cách Chọn 1 nữ trong 5 nữ: có 5 cách chọn => do đó có 1.5= 5 cách chọn 3 nam và 1 nữ Vậy để chọn 4 học sinh có cả nam và nữ ta có: 30+30+5=65 cách chọn
Quảng cáo
|