Giải bài 6.30 trang 17, 18 sách bài tập toán 9 - Kết nối tri thức tập 2Một cái hộp không có nắp được làm từ mảnh bìa hình chữ nhật có kích thước (30cm times 40cm) bằng cách cắt ở bốn góc của mảnh bìa bốn hình vuông bằng nhau. Diện tích phần đáy hộp là 336(c{m^2}). Tính độ dài mỗi cạnh hình vuông cắt ra ở bốn góc. Quảng cáo
Đề bài Một cái hộp không có nắp được làm từ mảnh bìa hình chữ nhật có kích thước \(30cm \times 40cm\) bằng cách cắt ở bốn góc của mảnh bìa bốn hình vuông bằng nhau. Diện tích phần đáy hộp là 336\(c{m^2}\). Tính độ dài mỗi cạnh hình vuông cắt ra ở bốn góc. Phương pháp giải - Xem chi tiết Các bước giải một bài toán bằng cách lập phương trình: Bước 1. Lập phương trình: - Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số. - Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết. - Lập phương trình biểu thị mối quan hệ giữa các đại lượng. Bước 2. Giải phương trình. Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận. Lời giải chi tiết Gọi độ dài cạnh của hình vuông cắt ra là x (cm). Điều kiện: \(0 < x < 15\). Sau khi cắt đi bốn hình vuông ở bốn góc và gập lên để được một hình hộp chữ nhật (không có nắp) thì đáy của hình hộp chữ nhật này có chiều rộng là \(30 - 2x\left( {cm} \right)\) và chiều dài là \(40 - 2x\left( {cm} \right)\). Vì diện tích phần đáy hộp là 336\(c{m^2}\) nên ta có phương trình: \(\left( {30 - 2x} \right)\left( {40 - 2x} \right) = 336\) \(4{x^2} - 140x + 864 = 0\) \({x^2} - 35x + 216 = 0\) Vì \(\Delta = {\left( { - 35} \right)^2} - 4.1.216 = 361\) nên phương trình có hai nghiệm \({x_1} = \frac{{35 - \sqrt {361} }}{2} = 8\) (thỏa mãn) và \({x_2} = \frac{{35 + \sqrt {361} }}{2} = 27\) (loại). Vậy độ dài cạnh của bốn hình vuông cắt ra ở bốn góc là 8cm.
Quảng cáo
|