Giải bài 6.24 trang 14 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Tìm tập xác định của các hàm số sau:

Quảng cáo

Đề bài

Tìm tập xác định của các hàm số sau:

a) \(y = {\rm{lo}}{{\rm{g}}_3}\left( {x + 1} \right)\)

b) \(y = {\rm{lo}}{{\rm{g}}_{\frac{1}{2}}}\left| {x - 1} \right|\)

Phương pháp giải - Xem chi tiết

Hàm số lôgarit \(y = {\rm{lo}}{{\rm{g}}_a}u\left( x \right)\) xác định khi và chỉ khi \(a > 0;a \ne 1;u\left( x \right) > 0\)

Từ đó suy ra tập xác định của hàm số \(y = {\rm{lo}}{{\rm{g}}_a}u\left( x \right)\)

Lời giải chi tiết

a) Hàm số \(y = {\rm{lo}}{{\rm{g}}_3}\left( {x + 1} \right)\) xác định \( \Leftrightarrow x + 1 > 0 \Leftrightarrow x >  - 1\)

Tập xác định của hàm số là \(\left( { - 1; + \infty } \right)\)

b) Ta có \(\left| {x - 1} \right| > 0,{\rm{\;}}\forall x \ne 1\)

 Hàm số \(y = {\rm{lo}}{{\rm{g}}_{\frac{1}{2}}}\left| {x - 1} \right|\) xác định \( \Leftrightarrow \left| {x - 1} \right| > 0 \Leftrightarrow x \ne  - 1\)

Tập xác định của hàm số là  \(\mathbb{R}\backslash \left\{ 1 \right\}\)

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close