Giải bài 6 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 1Tìm các giới hạn sau: a) \(\lim \left( {1 + 3n - {n^2}} \right)\); b) \(\lim \frac{{{n^3} + 3n}}{{2n - 1}}\); c) \(\lim \left( {\sqrt {{n^2} - n} + n} \right)\); d) \(\lim \left( {{3^{n + 1}} - {5^n}} \right)\). Quảng cáo
Đề bài Tìm các giới hạn sau: a) \(\lim \left( {1 + 3n - {n^2}} \right)\); b) \(\lim \frac{{{n^3} + 3n}}{{2n - 1}}\); c) \(\lim \left( {\sqrt {{n^2} - n} + n} \right)\); d) \(\lim \left( {{3^{n + 1}} - {5^n}} \right)\). Phương pháp giải - Xem chi tiết Sử dụng kiến thức về giới hạn vô cực để tính: Giả sử \(\lim {u_n} = + \infty \) và \(\lim {v_n} = a\) Nếu \(a > 0\) thì \(\lim {u_n}{v_n} = + \infty \). Nếu \(a < 0\) thì \(\lim {u_n}{v_n} = - \infty \). Lời giải chi tiết a) \(\lim \left( {1 + 3n - {n^2}} \right) = \lim \left[ {{n^2}\left( {\frac{1}{{{n^2}}} + \frac{3}{n} - 1} \right)} \right]\) Ta có: \(\lim {n^2} = + \infty ,\lim \left( {\frac{1}{{{n^2}}} + \frac{3}{n} - 1} \right) = - 1 < 0\). Do đó, \(\lim \left( {1 + 3n - {n^2}} \right) = \lim {n^2}\left( {\frac{1}{{{n^2}}} + \frac{3}{n} - 1} \right) = - \infty \) b) \(\lim \frac{{{n^3} + 3n}}{{2n - 1}} = \lim \left[ {{n^2}.\frac{{1 + \frac{3}{{{n^2}}}}}{{2 - \frac{1}{n}}}} \right]\) Ta có: \(\lim {n^2} = + \infty ,\lim \left( {\frac{{1 + \frac{3}{{{n^2}}}}}{{2 - \frac{1}{n}}}} \right) = \frac{1}{2} > 0\) Do đó, \(\lim \frac{{{n^3} + 3n}}{{2n - 1}} = \lim {n^2}\frac{{1 + \frac{3}{{{n^2}}}}}{{2 - \frac{1}{n}}} = + \infty \) c) \(\lim \left( {\sqrt {{n^2} - n} + n} \right) = \lim \left[ {n\left( {\sqrt {1 - \frac{1}{n}} + 1} \right)} \right]\) Ta có: \(\lim n = + \infty ,\lim \left( {\sqrt {1 - \frac{1}{n}} + 1} \right) = 2 > 0\) Do đó, \(\lim \left( {\sqrt {{n^2} - n} + n} \right) = \lim \left[ {n\left( {\sqrt {1 - \frac{1}{n}} + 1} \right)} \right] = + \infty \) d) \(\lim \left( {{3^{n + 1}} - {5^n}} \right) = \lim \left\{ {{5^n}\left[ {3.{{\left( {\frac{3}{5}} \right)}^n} - 1} \right]} \right\}\) Ta có: \(\lim {5^n} = + \infty ,\lim \left[ {3.{{\left( {\frac{3}{5}} \right)}^n} - 1} \right] = 3.0 - 1 = - 1 < 0\) Do đó, \(\lim \left( {{3^{n + 1}} - {5^n}} \right) = \lim \left\{ {{5^n}\left[ {3.{{\left( {\frac{3}{5}} \right)}^n} - 1} \right]} \right\} = - \infty \)
Quảng cáo
|