Giải bài 6 trang 45 sách bài tập toán 8 - Chân trời sáng tạo tập 2

Cho tam giác OPQ cân tại O có I là trung điểm của PQ. Kẻ IM//QO\(\left( {M \in OP} \right)\), IN//PO \(\left( {N \in QO} \right)\). Chứng minh:

Quảng cáo

Đề bài

Cho tam giác OPQ cân tại O có I là trung điểm của PQ. Kẻ IM//QO\(\left( {M \in OP} \right)\), IN//PO \(\left( {N \in QO} \right)\). Chứng minh:

a) Tam giác IMN cân tại I.

b) OI là đường trung trực của MN.

Phương pháp giải - Xem chi tiết

+ Sử dụng kiến thức về đường trung bình của tam giác để chứng minh: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.

+ Sử dụng kiến thức về tính chất của đường trung bình của tam giác để chứng minh: Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy. 

Lời giải chi tiết

a) Tam giác OPQ có: \(IP = IQ\), IM//QO nên \(MO = MP\)

Tam giác OPQ có: \(IP = IQ\), \(MO = MP\) nên IM là đường trung bình của tam giác OPQ, suy ra \(IM = \frac{1}{2}QO\)

Tương tự ta có: \(IN = \frac{1}{2}PO\).

Mà \(PO = QO\) (do tam giác POQ cân tại O) nên \(IM = IN\), suy ra tam giác IMN cân tại I.

b) Gọi K là giao điểm của IO và MN.

Tam giác OPQ có: \(MO = MP\), \(NO = NQ\) nên MN là đường trung bình của tam giác OPQ, suy ra MN//PQ (1).

Tam giác OPQ cân tại O có OI là đường trung tuyến nên OI cũng là đường cao của tam giác OPQ.

Suy ra: \(OI \bot PQ\) (2)

Từ (1) và (2) suy ra: \(MN \bot OI\) tại K hay \(MN \bot IK\)

Mà tam giác IMN cân tại I nên IK là đường trung trực của MN hay OI là đường trung trực của MN.

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close