Giải bài 5.16 trang 83 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Tìm giới hạn \(\mathop {\lim }\limits_{x \to + \infty } \left( {1 - x} \right)\left( {1 - {x^2}} \right)\left( {1 - {x^3}} \right)\)

Quảng cáo

Đề bài

Tìm giới hạn \(\mathop {\lim }\limits_{x \to  + \infty } \left( {1 - x} \right)\left( {1 - {x^2}} \right)\left( {1 - {x^3}} \right)\)

Phương pháp giải - Xem chi tiết

- Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.

- Với c là hằng số, ta có: \(\mathop {\lim }\limits_{x \to  + \infty } c = c,\mathop {\lim }\limits_{x \to  - \infty } c = c\)

- Với k là một số nguyên dương, ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{{x^k}}} = 0,\mathop {\lim }\limits_{x \to  - \infty } \frac{1}{{{x^k}}} = 0\)

Lời giải chi tiết

\(\mathop {\lim }\limits_{x \to  + \infty } \left( {1 - x} \right)\left( {1 - {x^2}} \right)\left( {1 - {x^3}} \right) = \mathop {\lim }\limits_{x \to  + \infty } {x^6}\left( {\frac{1}{x} - 1} \right)\left( {\frac{1}{{{x^2}}} - 1} \right)\left( {\frac{1}{{{x^3}}} - 1} \right) =  - \infty \)

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close