Giải bài 51 trang 57 sách bài tập toán 11 - Cánh diều

Trong các dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát sau, dãy số nào là cấp số nhân?

Quảng cáo

Đề bài

Trong các dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát sau, dãy số nào là cấp số nhân?

A. \({u_n} = \frac{1}{{{5^n}}}\)                        

B. \({u_n} = 1 + \frac{1}{{5n}}\)    

C. \({u_n} = \frac{1}{{{5^n} - 1}}\)    

D. \({u_n} = \frac{1}{{{n^2}}}\)

Phương pháp giải - Xem chi tiết

Dãy số \(\left( {{u_n}} \right)\) là cấp số nhân khi \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) là một hằng số.

Lời giải chi tiết

a) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{1}{{{5^{n + 1}}}}:\frac{1}{{{5^n}}} = \frac{{{5^n}}}{{{5^n}.5}} = \frac{1}{5}\).

Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) là một hằng số với \(\forall n \in {\mathbb{N}^*}\), dãy số đã cho là cấp số nhân với công bội \(q = \frac{1}{5}\).

b) Ta có \({u_n} = 1 + \frac{1}{{5n}} = \frac{{5n + 1}}{{5n}}\)

Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{5\left( {n + 1} \right) + 1}}{{5\left( {n + 1} \right)}}  :\frac{{5n + 1}}{{5n}} = \frac{{5n + 6}}{{5\left( {n + 1} \right)}}.\frac{{5n}}{{5n + 1}} = \frac{{n\left( {5n + 6} \right)}}{{\left( {n + 1} \right)\left( {5n + 1} \right)}}\).

Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không là một hằng số với \(\forall n \in {\mathbb{N}^*}\), dãy số đã cho không là cấp số nhân.

c) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{1}{{{5^{n + 1}} - 1}}  :\frac{1}{{{5^n} - 1}} = \frac{{{5^n} - 1}}{{{5^{n + 1}} - 1}}\)

Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không là một hằng số với \(\forall n \in {\mathbb{N}^*}\), dãy số đã cho không là cấp số nhân.

d) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{1}{{{{\left( {n + 1} \right)}^2}}}:\frac{1}{{{n^2}}} = \frac{{{n^2}}}{{{{\left( {n + 1} \right)}^2}}}\)

Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không là một hằng số với \(\forall n \in {\mathbb{N}^*}\), dãy số đã cho không là cấp số nhân.

Đáp án đúng là A.

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close