Giải bài 56 trang 57 sách bài tập toán 11 - Cánh diềuCho dãy số \(\left( {{u_n}} \right)\) biết \({u_1} = 1\), \({u_2} = 2\), \({u_{n + 1}} = 2{u_n} - {u_{n - 1}} + 2\) với \(n \ge 2\). Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_1} = 1\), \({u_2} = 2\), \({u_{n + 1}} = 2{u_n} - {u_{n - 1}} + 2\) với \(n \ge 2\). a) Viết năm số hạng đầu của dãy số. b) Đặt \({v_n} = {u_{n + 1}} - {u_n}\) với \(n \in {\mathbb{N}^*}\). Chứng minh rằng dãy số \(\left( {{v_n}} \right)\) là cấp số cộng. c) Tìm công thức của \({v_n}\), \({u_n}\) tính theo \(n\). Phương pháp giải - Xem chi tiết a) Thay \(n = 2\), \(n = 3\), \(n = 4\) vào biểu thức \({u_{n + 1}} = 2{u_n} - {u_{n - 1}} + 2\) để tính \({u_3},{u_4},{u_5}\). b) Do \({u_{n + 1}} = 2{u_n} - {u_{n - 1}} + 2 \Rightarrow {u_{n + 1}} - {u_n} = {u_n} - {u_{n - 1}} + 2 \Rightarrow {v_n} = {v_{n - 1}} + 2\). Suy ra \(\left( {{v_n}} \right)\) là cấp số cộng. c) Do \(\left( {{v_n}} \right)\) là cấp số cộng nên \({v_n} = {v_1} + \left( {n - 1} \right)d\). Ta có \({v_1} = {u_2} - {u_1}\), \({v_2} = {u_3} - {u_2}\), \({v_3} = {u_4} - {u_3}\),…, \({v_{n - 1}} = {u_n} - {u_{n - 1}}\) Do đó \({v_1} + {v_2} + {v_3} + .... + {v_{n - 1}} = - {u_1} + {u_n}\) Từ đó ta tính được công thức số hạng tổng quát của \(\left( {{u_n}} \right)\) Lời giải chi tiết a) Ta có \({u_3} = 2{u_2} - {u_1} + 2 = 2.2 - 1 + 2 = 5\) \({u_4} = 2{u_3} - {u_2} + 2 = 2.5 - 2 + 2 = 10\) \({u_5} = 2{u_4} - {u_3} + 2 = 2.10 - 5 + 2 = 17\) Vậy năm số hạng đầu của dãy số là 1, 2, 5, 10, 17. b) Do \({u_{n + 1}} = 2{u_n} - {u_{n - 1}} + 2 \Rightarrow {u_{n + 1}} - {u_n} = {u_n} - {u_{n - 1}} + 2\) Mà \({v_n} = {u_n} - {u_{n - 1}}\), ta suy ra \({v_n} = {v_{n - 1}} + 2 \Rightarrow {v_n} - {v_{n - 1}} = 2\) Dãy số \(\left( {{v_n}} \right)\) có \({v_n} - {v_{n - 1}} = 2\) là một hằng số, nên \(\left( {{v_n}} \right)\) là cấp số cộng có số hạng đầu \({v_1} = {u_2} - {u_1} = 2 - 1 = 1\), công sai \(d = 2\). c) Do \(\left( {{v_n}} \right)\) là cấp số cộng, nên \({v_n} = {v_1} + \left( {n - 1} \right)d = 1 + 2\left( {n - 1} \right) = 2n - 1\) Ta có \({v_1} = {u_2} - {u_1}\), \({v_2} = {u_3} - {u_2}\), \({v_3} = {u_4} - {u_3}\),…, \({v_{n - 1}} = {u_n} - {u_{n - 1}}\) Do đó \({v_1} + {v_2} + {v_3} + .... + {v_{n - 1}} = - {u_1} + {u_n}\) Suy ra \({u_n} = \frac{{\left( {2v{\rm{\_1 + }}\left( {n - 2} \right)d} \right)\left( {n - 1} \right)}}{2} + 1 = {\left( {n - 1} \right)^2} + 1\).
Quảng cáo
|