Giải bài 4.16 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sốngCho tứ giác ABCD. Gọi M,\,\,N theo thứ tự là trung điểm của cạnh AB,\,\,CD và gọi I là trung điểm của MN. Chứng minh rằng với điểm O bất kì đều có Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Quảng cáo
Đề bài Cho tứ giác \(ABCD.\) Gọi \(M,\,\,N\) theo thứ tự là trung điểm của cạnh \(AB,\,\,CD\) và gọi \(I\) là trung điểm của \(MN.\) Chứng minh rằng với điểm \(O\) bất kì đều có \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = 4\overrightarrow {OI} .\) Phương pháp giải - Xem chi tiết - Tính chất trun điểm: \(\overrightarrow {IA} + \overrightarrow {IB} = 2\overrightarrow {IM} \) - Chèn điểm I vào giữa các vectơ \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} \) Lời giải chi tiết Ta có: \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \left( {\overrightarrow {OI} + \overrightarrow {IA} } \right) + \left( {\overrightarrow {OI} + \overrightarrow {IB} } \right) + \left( {\overrightarrow {OI} + \overrightarrow {IC} } \right) + \left( {\overrightarrow {OI} + \overrightarrow {ID} } \right)\) \(\begin{array}{l} = 4\overrightarrow {OI} + \left( {\overrightarrow {IA} + \overrightarrow {IB} } \right) + \left( {\overrightarrow {IC} + \overrightarrow {ID} } \right)\\ = 4\overrightarrow {OI} + 2\overrightarrow {IM} + 2\overrightarrow {IN} \\ = 4\overrightarrow {OI} \end{array}\)
Quảng cáo
|