Giải bài 4.13 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Cho tam giác ABC. Gọi D,E tương ứng là trung điểm của BC,CA.

Quảng cáo

Đề bài

Cho tam giác \(ABC.\) Gọi \(D,\,\,E\) tương ứng là trung điểm của \(BC,\,\,CA.\) Hãy biểu thị các vectơ \(\overrightarrow {AB} ,\,\,\overrightarrow {BC} ,\,\,\overrightarrow {CA} \) theo các vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {BE} .\)

Phương pháp giải - Xem chi tiết

-  Tính vectơ \(\overrightarrow {DE} \)

- Tính \(\overrightarrow {AB} \): \(\overrightarrow {AB}  = \overrightarrow {AD}  + \overrightarrow {DE}  + \overrightarrow {EB} \)

- Tính \(\overrightarrow {BC} \): \(\overrightarrow {BC}  = 2\overrightarrow {BD}  = 2\left( {\overrightarrow {AD}  - \overrightarrow {AB} } \right)\)

- Tính \(\overrightarrow {CA} \): \(\overrightarrow {CA}  = \overrightarrow {DA}  - \overrightarrow {DC}  =  - \overrightarrow {AD}  - \overrightarrow {DC} \)

Lời giải chi tiết

Ta có: \(DE\) là đường trung bình của \(\Delta ABC\)

\( \Rightarrow \) \(\overrightarrow {DE}  =  - \frac{1}{2}\overrightarrow {AB} \)

Ta có: \(\overrightarrow {AB}  = \overrightarrow {AD}  + \overrightarrow {DE}  + \overrightarrow {EB}  = \overrightarrow {AD}  - \frac{1}{2}\overrightarrow {AB}  + \overrightarrow {EB} \)

\(\begin{array}{l} \Rightarrow \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AB}  = \overrightarrow {AD}  - \overrightarrow {BE} \\ \Rightarrow \frac{3}{2}\overrightarrow {AB}  = \overrightarrow {AD}  - \overrightarrow {BE} \\ \Rightarrow \overrightarrow {AB}  = \frac{2}{3}\left( {\overrightarrow {AD}  - \overrightarrow {BE} } \right) = \frac{2}{3}\overrightarrow {AD}  - \frac{2}{3}\overrightarrow {BE} \end{array}\)

Ta có: \(\overrightarrow {BC}  = 2\overrightarrow {BD}  = 2\left( {\overrightarrow {AD}  - \overrightarrow {AB} } \right)\)

\(\begin{array}{l} = 2\left( {\overrightarrow {AD}  - \frac{2}{3}\overrightarrow {AD}  + \frac{2}{3}\overrightarrow {BE} } \right)\\ = 2\left( {\frac{1}{3}\overrightarrow {AD}  + \frac{2}{3}\overrightarrow {BE} } \right) = \frac{2}{3}\overrightarrow {AD}  + \frac{4}{3}\overrightarrow {BE} \end{array}\)

Ta có: \(\overrightarrow {CA}  = \overrightarrow {DA}  - \overrightarrow {DC}  =  - \overrightarrow {AD}  - \overrightarrow {DC} \)

\(\begin{array}{l} =  - \overrightarrow {AD}  - \frac{1}{2}\left( {\frac{2}{3}\overrightarrow {AD}  + \frac{4}{3}\overrightarrow {BE} } \right)\\ =  - \overrightarrow {AD}  - \frac{1}{3}\overrightarrow {AD}  - \frac{2}{3}\overrightarrow {BE} \\ =  - \frac{4}{3}\overrightarrow {AD}  - \frac{2}{3}\overrightarrow {BE} \end{array}\)

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close