Giải bài 4 trang 8 sách bài tập toán 12 - Cánh diều

Hàm số (y = {e^{ - 5{rm{x}} + 4}}) là nguyên hàm của hàm số: A. (y = frac{1}{{{e^{ - 5{rm{x}} + 4}}}}). B. (y = {e^{ - 5{rm{x}} + 4}}). C. (y = frac{{{e^{ - 5{rm{x}} + 4}}}}{{ - 5}}). D. (y = - 5{e^{ - 5{rm{x}} + 4}}).

Quảng cáo

Đề bài

Hàm số \(y = {e^{ - 5{\rm{x}} + 4}}\) là nguyên hàm của hàm số:

A. \(y = \frac{1}{{{e^{ - 5{\rm{x}} + 4}}}}\).

B. \(y = {e^{ - 5{\rm{x}} + 4}}\).

C. \(y = \frac{{{e^{ - 5{\rm{x}} + 4}}}}{{ - 5}}\).

D. \(y =  - 5{e^{ - 5{\rm{x}} + 4}}\).

Phương pháp giải - Xem chi tiết

Sử dụng khái niệm nguyên hàm: Hàm số \(F\left( x \right)\) được gọi là nguyên hàm của hàm số \(f\left( x \right)\) trên \(K\) nếu \(F'\left( x \right) = f\left( x \right)\) với mọi \(x\) thuộc \(K\).

Lời giải chi tiết

Ta có: \(y' = {\left( {{e^{ - 5{\rm{x}} + 4}}} \right)^\prime } = {\left( { - 5{\rm{x}} + 4} \right)^\prime }.{e^{ - 5{\rm{x}} + 4}} =  - 5{e^{ - 5{\rm{x}} + 4}}\).

Vậy hàm số \(y = {e^{ - 5{\rm{x}} + 4}}\) là nguyên hàm của hàm số \(y =  - 5{e^{ - 5{\rm{x}} + 4}}\).

Chọn D.

  • Giải bài 5 trang 8 sách bài tập toán 12 - Cánh diều

    Hàm số (y = log x) là nguyên hàm của hàm số: A. (y = frac{1}{x}). B. (y = frac{1}{{xln 10}}). C. (y = frac{{ln 10}}{x}). D. (y = frac{1}{{xlog 10}}).

  • Giải bài 6 trang 8 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d, chọn phương án: đúng (Đ) hoặc sai (S). Cho hàm số (fleft( x right) = 4{x^3} - 3{{rm{x}}^2}). a) (int {fleft( x right)dx} = int {4{x^3}dx} - int {3{{rm{x}}^2}dx} ). b) (f'left( x right) = 12{{rm{x}}^2} - 6{rm{x}}). c) (f'left( x right) = {x^4} - {x^3}). d) (int {fleft( x right)dx} = {x^4} + {x^3} + C).

  • Giải bài 7 trang 8 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d, chọn phương án: đúng (Đ) hoặc sai (S). Cho hàm số (fleft( x right) = sin x + cos x). a) (int {fleft( x right)dx} = int {sin xdx} + int {cos xdx} ). b) (f'left( x right) = cos x - sin x). c) (f'left( x right) + fleft( x right) = cos x). d) (int {fleft( x right)dx} = - cos x + sin x + C).

  • Giải bài 8 trang 9 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d, chọn phương án: đúng (Đ) hoặc sai (S). Cho hàm số (fleft( x right) = left( {x + 2} right)left( {x + 1} right)). a) (fleft( x right) = {x^2} + 3{rm{x}} + 2). b) (f'left( x right) = 2{rm{x}} + 3). c) (int {fleft( x right)dx} = int {left( {x + 2} right)dx} .int {left( {x + 1} right)dx} ). d) (int {fleft( x right)dx} = frac{1}{3}{x^3} + frac{3}{2}{x^2} + 2{rm{x}} + C).

  • Giải bài 9 trang 9 sách bài tập toán 12 - Cánh diều

    Tìm nguyên hàm của các hàm số sau: a) (fleft( x right) = 2{x^2} - 4{x^5} + 6); b) (fleft( x right) = left( {x + 3} right)left( { - 2 - x} right)); c) (fleft( x right) = frac{{{x^6} - 7{{rm{x}}^3}}}{x}left( {x > 0} right)).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close