Giải bài 4 trang 76 SGK Toán 8 tập 2– Chân trời sáng tạoTrong Hình 11, cho biết Quảng cáo
Đề bài Trong Hình 11, cho biết \(\widehat B = \widehat C,BE = 25cm,AB = 20cm,DC = 15cm\). Tính độ dài đoạn thẳng \(CE\). Video hướng dẫn giải Phương pháp giải - Xem chi tiết - Nếu một tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau. - Hai tam giác đồng dạng sẽ có các cặp cạnh tương ứng có cùng tỉ lệ. - Định lí Py – ta – go. Lời giải chi tiết Xét \(\Delta ABE\) và \(\Delta ACD\) có: \(\widehat {EBA} = \widehat {ACD}\) (giả thuyết) \(\widehat {BAE} = \widehat {CAD} = 90^\circ \) Do đó, \(\Delta ABE\backsim\Delta ACD\) (g.g) Vì \(\Delta ABE\backsim\Delta ACD\) nên \(\frac{{AB}}{{AC}} = \frac{{EB}}{{CD}}\) (các cặp cạnh tương ứng) Thay số, \(\frac{{20}}{{AC}} = \frac{{25}}{{15}} \Rightarrow AC = \frac{{20.15}}{{25}} = 12\)cm. Áp dụng định lí Py – ta – go cho \(\Delta ABE\) vuông tại \(A\) ta có: \(B{E^2} = A{E^2} + A{B^2} \\\Leftrightarrow A{E^2} = B{E^2} - A{B^2} = {25^2} - {20^2} = 225 \\\Rightarrow AE = \sqrt {225} = 15cm\) Độ dài \(CE\) là: 15 – 12 = 3cm Vậy \(CE = 3cm.\)
Quảng cáo
|