Giải bài 4 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 1Cho hai dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) có \(\lim {u_n} = 3,\lim {v_n} = 4\). Tìm các giới hạn sau: a) \(\lim \left( {3{u_n} - 4} \right)\); b) \(\lim \left( {{u_n} + 2{v_n}} \right)\); c) \(\lim {\left( {{u_n} - {v_n}} \right)^2}\); d) \(\lim \frac{{ - 2{u_n}}}{{{v_n} - 2{u_n}}}\). Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Cho hai dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) có \(\lim {u_n} = 3,\lim {v_n} = 4\). Tìm các giới hạn sau: a) \(\lim \left( {3{u_n} - 4} \right)\); b) \(\lim \left( {{u_n} + 2{v_n}} \right)\); c) \(\lim {\left( {{u_n} - {v_n}} \right)^2}\); d) \(\lim \frac{{ - 2{u_n}}}{{{v_n} - 2{u_n}}}\). Phương pháp giải - Xem chi tiết a) + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} - {v_n}} \right) = a - b\), \(\lim \left( {c.{u_n}} \right) = c.a\). + Sử dụng kiến thức về một số giới hạn cơ bản: \(\lim c = c\) (c là hằng số). b) + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} + {v_n}} \right) = a + b\), \(\lim \left( {c.{u_n}} \right) = c.a\). + Sử dụng kiến thức về một số giới hạn cơ bản: \(\lim c = c\) (c là hằng số). c) Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} - {v_n}} \right) = a - b\) d) Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} - {v_n}} \right) = a - b\), \(\lim \left( {c.{u_n}} \right) = c.a\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\). Lời giải chi tiết a) \(\lim \left( {3{u_n} - 4} \right) = 3\lim {u_n} - 4 = 3.3 - 4 = 5\); b) \(\lim \left( {{u_n} + 2{v_n}} \right) = \lim {u_n} + 2\lim {v_n} = 3 + 2.4 = 11\); c) \(\lim {\left( {{u_n} - {v_n}} \right)^2} = {\left( {\lim {u_n} - \lim {v_n}} \right)^2} = {\left( {4 - 3} \right)^2} = 1\); d) \(\lim \frac{{ - 2{u_n}}}{{{v_n} - 2{u_n}}} = \frac{{ - 2\lim {u_n}}}{{\lim {v_n} - \lim 2{u_n}}} = \frac{{ - 2.3}}{{4 - 2.3}} = 3\).
Quảng cáo
|