Giải bài 4 trang 14 sách bài tập toán 11 - Chân trời sáng tạo tập 1Biết \(\sin \alpha = \frac{3}{5}\) và \(\frac{\pi }{2} < \alpha < \pi \). Tính giá trị của các biểu thức sau: Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Biết \(\sin \alpha = \frac{3}{5}\) và \(\frac{\pi }{2} < \alpha < \pi \). Tính giá trị của các biểu thức sau: a) \(A = \frac{{3\sin \alpha }}{{2\cos \alpha - \tan \alpha }}\); b) \(B = \frac{{{{\cot }^2}\alpha - \sin \alpha }}{{\tan \alpha + 2\cos \alpha }}\). Phương pháp giải - Xem chi tiết Sử dụng kiến thức về hệ thức cơ bản giữa các giá trị lượng giác của một góc: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\), \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\), \(\cot \alpha = \frac{1}{{\tan \alpha }}\) Lời giải chi tiết Vì \(\frac{\pi }{2} < \alpha < \pi \Rightarrow \cos \alpha < 0\). Do đó, \(\cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - {{\left( {\frac{3}{5}} \right)}^2}} = \frac{{ - 4}}{5}\) \( \Rightarrow \tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{ - 3}}{4},\cot \alpha = \frac{{ - 4}}{3}\) a) \(A = \frac{{3\sin \alpha }}{{2\cos \alpha - \tan \alpha }} = \frac{{3.\frac{3}{5}}}{{2.\frac{{ - 4}}{5} + \frac{3}{4}}} = \frac{{ - 36}}{{17}}\); b) \(B = \frac{{{{\cot }^2}\alpha - \sin \alpha }}{{\tan \alpha + 2\cos \alpha }} = \frac{{{{\left( {\frac{{ - 4}}{3}} \right)}^2} - \frac{3}{5}}}{{\frac{{ - 3}}{4} + 2.\frac{{ - 4}}{5}}} = \frac{{ - 212}}{{423}}\).
Quảng cáo
|