Giải Bài 35 trang 22 sách bài tập toán 7 tập 1 - Cánh diềuCho A=..... Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Cánh diều Toán - Văn - Anh - Khoa học tự nhiên... Quảng cáo
Đề bài Cho \(A = \left( {17,81:1,37 - \dfrac{{59}}{3}:\dfrac{{11}}{6}} \right) + \dfrac{{{{(0,8)}^3}}}{{{{(0,4)}^3}.11}}\). Chứng minh rằng A + 1 là bình phương của một số tự nhiên. Phương pháp giải - Xem chi tiết Ta có thể tính giá trị của biểu thức A trước rồi tính giá trị của biểu thức A + 1 để xem nó có là bình phương của một số tự nhiên hay không. Lời giải chi tiết Ta có: \(\begin{array}{l}A = \left( {17,81:1,37 - \dfrac{{59}}{3}:\dfrac{{11}}{6}} \right) + \dfrac{{{{(0,8)}^3}}}{{{{(0,4)}^3}.11}}\\ = \left( {\dfrac{{1781}}{{100}}:\dfrac{{137}}{{100}} - \dfrac{{59}}{3}.\dfrac{6}{{11}}} \right) + \dfrac{{0,512}}{{0,064.11}}\\{\rm{ = }}\left( {\dfrac{{1781}}{{100}}.\dfrac{{100}}{{137}} - \dfrac{{118}}{{11}}} \right) + \dfrac{{0,512}}{{0,704}}\\= \left( {13 - \dfrac{{118}}{{11}}} \right) + \dfrac{512}{{704}} \\=\left( {\dfrac{143}{11} - \dfrac{{118}}{{11}}} \right) + \dfrac{8}{{11}} \\= \dfrac{{25}}{{11}} + \dfrac{8}{{11}}\\= \dfrac{{33}}{{11}}\\ = 3\end{array}\) Vậy \(A + 1 = 3 + 1 = 4\). Mà \(4 = {2^2} \) nên A + 1 là bình phương của một số tự nhiên.
Quảng cáo
|