Giải bài 3.20 trang 39 sách bài tập toán 8 - Kết nối tri thức với cuộc sốngCho tam giác ABC cân tại A, AH là đường cao. Gọi M, N lần lượt là trung điểm của AB, AC. Gọi D, E lần lượt là điểm sao cho M là trung điểm của HD, N là trung điểm của HE. Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Khoa học tự nhiên Quảng cáo
Đề bài Cho tam giác ABC cân tại A, AH là đường cao. Gọi M, N lần lượt là trung điểm của AB, AC. Gọi D, E lần lượt là điểm sao cho M là trung điểm của HD, N là trung điểm của HE. a) Chứng minh AHBD, AHCE, BCED là những hình chữ nhật. b) Tại sao giao điểm của BE và CD là trung điểm của AH? c) Giải thích tại sao \(DH = HE,BE = CD\). Phương pháp giải - Xem chi tiết a) Sử dụng kiến thức về dấu hiệu nhận biết hình chữ nhật để chứng minh:
b) Sử dụng tính chất của hình chữ nhật để chứng minh: Hình chữ nhật có hai đường chéo cắt nhau tại trung điểm mỗi đường. c) Sử dụng tính chất của hình chữ nhật để chứng minh: Hình chữ nhật có các cặp cạnh đối bằng nhau. Lời giải chi tiết a) Tam giác ABC cân tại A, AH là đường cao nên \(AH \bot BC\), do đó \(\widehat {AHB} = \widehat {AHC} = {90^0}\) Tứ giác AHBD có: M là trung điểm của AB, M là trung điểm của DH nên AHBD là hình bình hành. Mà \(\widehat {AHB} = {90^0}\) nên AHBD là hình chữ nhật. Suy ra: \(\widehat {ADB} = \widehat {DBH} = {90^0}\) Tứ giác AHCE có: N là trung điểm của AC, N là trung điểm của EH nên AHCE là hình bình hành. Mà \(\widehat {AHC} = {90^0}\) nên AHCE là hình chữ nhật. Suy ra \(\widehat {AEC} = \widehat {ECH} = {90^0}\) Tứ giác BCED có: \(\widehat {ADB} = \widehat {DBH} = \widehat {AEC} = \widehat {ECH} = {90^0}\) nên tứ giác BCED là hình chữ nhật. b) Vì tam giác ABC cân tại A nên AH là đường cao đồng thời là đường trung tuyến, do đó \(BH = CH\) Vì AHCE là hình chữ nhật nên \(HC = AE\), EA//BH. Ta có, \(BH = CH\), \(HC = AE\) nên \(BH = AE\) Tứ giác AEHB có: \(BH = AE\), EA//BH nên AEHB là hình bình hành. Do đó, hai đường chéo BE và AH cắt nhau tại trung điểm của mỗi đường (1). Vì BCED là hình chữ nhật nên hai đường chéo BE và CD cắt nhau tại trung điểm của mỗi đường (2). Từ (1) và (2) ta có: Giao điểm của BE và CD là trung điểm của AH. c) Vì BCED là hình chữ nhật nên \(BE = CD\) Vì AHBD là hình chữ nhật nên \(AB = HD\) Vì AHCE là hình chữ nhật nên \(AC = HE\) Mà tam giác ABC cân tại A nên \(AB = AC\) Do đó, \(HD = HE\)
Quảng cáo
|