Giải bài 32 trang 63 sách bài tập toán 8 - Cánh diềuCho đường thẳng \(d:y = \left( {m - \frac{1}{2}} \right)x + 2m - 2\) với \(m \ne \frac{1}{2}\). Tìm giá trị của \(m\) để: Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều Toán - Văn - Anh - Khoa học tự nhiên Quảng cáo
Đề bài Cho đường thẳng \(d:y = \left( {m - \frac{1}{2}} \right)x + 2m - 2\) với \(m \ne \frac{1}{2}\). Tìm giá trị của \(m\) để: a) Đường thẳng \(d\) song song với đường thẳng \({d_1}:y = \frac{1}{2}mx - 2\) với \(m \ne 0\); b) Đường thẳng \(d\) trùng với đường thẳng \({d_2}:y = x - \frac{2}{3}m + 2\); c) Đường thẳng \(d\) và đường thẳng \({d_3}:y = \sqrt 2 x - m + 2\) cắt nhau tại một điểm nằm trên trục \(Oy\). Phương pháp giải - Xem chi tiết Dựa vào điều kiện song song, trùng nhau, cắt nhau của hai đường thẳng để tìm giá trị của \(m\). Lời giải chi tiết a) Để \(d\) song song với \({d_1}\) thì \(m - \frac{1}{2} = \frac{1}{2}m\) và \(2m - 2 \ne - 2\). Suy ra \(m = 1\). Dễ thấy với \(m = 1\) ta có \(d\) và \({d_1}\) trở thành \(d:y = \frac{1}{2}x\) và \({d_1}:y = \frac{1}{2}x - 2\). Khi đó, \(d\) song song với \({d_1}\). b) Để \(d\) trùng với \({d_1}\) thì \(m - \frac{1}{2} = 1\) và \(2m - 2 = - \frac{2}{3}m + 2\). Suy ra \(m = \frac{3}{2}\). c) Đường thẳng \(d\)và đường thẳng \({d_3}\) lần lượt cắt trục \(Oy\) tại \(A\left( {;2m - 2} \right)\) và \(B\left( {0; - m + 2} \right)\). Do đó, \(d\) và \({d_3}\) cắt nhau tại một điểm nằm trên trục \(Oy\) khi \(m - \frac{1}{2} \ne \sqrt 2 \) và \(2m - 2 = - m + 2\). Suy ra \(m = \frac{4}{3}\). Dễ thấy với \(m = \frac{4}{3}\) ta có \(d\) và \({d_3}\) trở thành \(d:y = \frac{5}{6}x + \frac{2}{3}\) và \({d_3}:y = \sqrt 2 x + \frac{2}{3}\) Khi đó \(d\) và \({d_3}\) cắt nhau tại điểm \(\left( {0;\frac{2}{3}} \right)\) nằm trên trục \(Oy\)
Quảng cáo
|