Giải bài 31 trang 55 sách bài tập toán 11 - Cánh diềuTrong các dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát sau, dãy số nào là cấp số nhân? Quảng cáo
Đề bài Trong các dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát sau, dãy số nào là cấp số nhân? A. \({u_n} = {5^n}\) B. \({u_n} = 1 + 5n\) C. \({u_n} = {5^n} + 1\) D. \({u_n} = 5 + {n^2}\) Phương pháp giải - Xem chi tiết Dãy số \(\left( {{u_n}} \right)\) là cấp số nhân khi thương \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không đổi với mọi \(n \ge 1\) và \({u_n} \ne 0\). Lời giải chi tiết Nhận xét rằng trong mỗi dãy số đã cho, tất cả các số hạng đều khác 0. a) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{5^{n + 1}}}}{{{5^n}}} = 5\). Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) là một hằng số, nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {5^n}\) là cấp số nhân. b) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{1 + 5\left( {n + 1} \right)}}{{1 + 5n}} = \frac{{6 + 5n}}{{1 + 5n}}\) Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không là một hằng số, nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 1 + 5n\) không là cấp số nhân. c) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{1 + {5^{n + 1}}}}{{1 + {5^n}}}\). Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không là một hằng số, nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {5^n} + 1\) không là cấp số nhân. d) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{5 + {{\left( {n + 1} \right)}^2}}}{{5 + {n^2}}} = \frac{{{n^2} + 2n + 6}}{{{n^2} + 5}}\) Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không là một hằng số, nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 5 + {n^2}\) không là cấp số nhân.
Quảng cáo
|