Bài 30 trang 161 Vở bài tập toán 8 tập 1

Giải bài 30 trang 161 VBT toán 8 tập 1. Cho hình vuông ABCD có tâm đối xứng O, cạnh a...

Quảng cáo

Đề bài

Cho hình vuông \(ABCD\) có tâm đối xứng \(O\), cạnh \(a.\) Một góc vuông \(xOy\) có tia \(Ox\) cắt cạnh \(AB\) tại \(E\), tia \(Oy\) cắt cạnh \(BC\) tại \(F\) (h.\(115\))

Tính diện tích tứ giác \(OEBF.\)

Phương pháp giải - Xem chi tiết

Áp dụng tính chất hình vuông, công thức tính diện tích hình vuông; diện tích tam giác vuông, tam giác thường.

Diện tích hình vuông cạnh \(a\) bằng \(a^2\)

Diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông

Diện tích tam giác bằng nửa tích cạnh đáy và chiều cao tương ứng.

Lời giải chi tiết

\(O\) là giao điểm hai đường chéo của hình vuông \(ABCD\) 

nên \(\widehat {AOB} = 90^o\) và \(OA=OB\).

\(\Delta AOE\) và \(\Delta BOF\) có:

\(\widehat {EAO} = \widehat {FBO} \) (vì \(ABCD\) là hình vuông)

\(OA = OB\) (chứng minh trên)

\(\widehat {AOE} = \widehat {BOF}\) (cùng phụ với \(\widehat {BOE}\))

Do đó \( ∆AOE = ∆BOF\, (g.c.g) \), suy ra \({S_{AOE}} = {S_{BOF}}\)

Cùng cộng với \({S_{EOB}}\) ta được \({S_{AOB}}={S_{OEBF}} \)   (1)

Ta lại có \({S_{AOB}}=\dfrac{1}{4}{S_{ABCD}}= \dfrac{1}{4}{a^2}\)   (2)

Từ (1) và (2) suy ra \({S_{OEBF}}  = \dfrac{1}{4}{a^2}\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close