Bài 33 trang 163 Vở bài tập toán 8 tập 1Giải bài 33 trang 163 VBT toán 8 tập 1. Cho tam giác ABC. Gọi M, N là các trung điểm tương ứng của AC, BC... Quảng cáo
Đề bài Cho tam giác \(ABC.\) Gọi \(M, N\) là các trung điểm tương ứng của \(AC, BC.\) Chứng minh rằng diện tích của hình thang \(ABNM\) bằng \(\dfrac{3}{4}\) diện tích của tam giác \(ABC.\) Phương pháp giải - Xem chi tiết Diện tích tam giác bằng nửa tích của một cạnh với chiều cao ứng với cạnh đó. $$S = {1 \over 2}ah$$ Lời giải chi tiết \({S_{CMN}} = \dfrac{1}{2}{S_{CAN}}\) (vì \(CM = \dfrac{1}{2}CA,\) chung chiều cao kẻ từ \(N\) đến \(CA\)). \({S_{CAN}} = \dfrac{1}{2}{S_{ABC}}\) (vì \(CN = \dfrac{1}{2}CB,\) chung chiều cao kẻ từ \(A\) đến \(CB\)). Suy ra \({S_{CMN}} = \dfrac{1}{4}{S_{ABC}}\). Do đó \({S_{ABNM}} = {S_{ABC}} - {S_{CMN}} \)\(\,= {S_{ABC}} - \dfrac{1}{4}{S_{ABC}} = \dfrac{3}{4}{S_{ABC}}\). Loigiaihay.com
Quảng cáo
|