Giải bài 26 trang 104 sách bài tập toán 11 - Cánh diềuCho hình chóp \(S.ABCD\) có đáy\(ABCD\) là hình bình hành. Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Cho hình chóp \(S.ABCD\) có đáy\(ABCD\) là hình bình hành. Gọi \(M\) là điểm chuyển động trên cạnh \(SC\) (\(M\) khác \(C\)), \(\left( P \right)\) là mặt phẳng chứa đường thẳng \(AM\) và song song với \(BD\). Chứng minh rằng mặt phẳng \(\left( P \right)\) luôn đi qua một đường thẳng cố định khi \(M\) chuyển động trên cạnh \(SC\). Phương pháp giải - Xem chi tiết Sử dụng định lí sau: “Cho đường thẳng \(a\) song song với mặt phẳng \(\left( P \right)\). Mặt phẳng \(\left( Q \right)\) chứa \(a\) và cắt \(\left( P \right)\) theo giao tuyến \(b\) thì \(a\parallel b\).” Trên mặt phẳng \(\left( {ABCD} \right)\), vẽ đường thẳng \(d\) đi qua \(A\) và song song với \(BD\). Chứng minh rằng \(d \subset \left( P \right)\). Lời giải chi tiết Trên mặt phẳng \(\left( {ABCD} \right)\), vẽ đường thẳng \(d\) đi qua \(A\) và song song với \(BD\). Xét mặt phẳng \(\left( P \right)\) và \(\left( {ABCD} \right)\), ta có \(A \in AM \subset \left( P \right)\) và \(A \in \left( {ABCD} \right)\) nên giao tuyến của \(\left( P \right)\) và \(\left( {ABCD} \right)\) là đường thẳng đi qua \(A\). Mặt khác, ta có \(BD\parallel \left( P \right)\), \(BD \subset \left( {ABCD} \right)\) nên giao tuyến của \(\left( P \right)\) và \(\left( {ABCD} \right)\) là một đường thẳng song song với \(BD\). Do đường thẳng \(d\) đi qua \(A\) và song song với \(BD\) nên \(d\) chính là giao tuyến của \(\left( P \right)\) và \(\left( {ABCD} \right)\). Vì hình bình hành \(ABCD\) cố định, nên đường thẳng \(d\) cố định. Vậy mặt phẳng \(\left( P \right)\) luôn đi qua đường thẳng \(d\) cố định. Bài toán được chứng minh.
Quảng cáo
|