Giải Bài 24 trang 18 sách bài tập toán 7 tập 1 - Cánh diềuSo sánh: Quảng cáo
Đề bài So sánh: a) \({\left( { - {\rm{ }}0,1} \right)^2}.{\left( { - {\rm{ }}0,1} \right)^4}\) và \({\left[ {{{\left( { - {\rm{ }}0,1} \right)}^3}} \right]^2}\); b) \({\left( {\dfrac{1}{2}} \right)^8}:{\left( {\dfrac{1}{2}} \right)^2}\) và \({\left( {\dfrac{1}{2}} \right)^3}.{\left( {\dfrac{1}{2}} \right)^3}\); c) \({9^8}:{27^3}\) và \({3^2}{.3^5}\); d) \({\left( {\dfrac{1}{4}} \right)^7}.0,25\) và \({\left[ {{{\left( {\dfrac{1}{4}} \right)}^2}} \right]^4}\); e) \({\left[ {{{\left( { - {\rm{ }}0,7} \right)}^2}} \right]^3}\) và \({\left[ {{{\left( {0,7} \right)}^3}} \right]^2}\). Phương pháp giải - Xem chi tiết Muốn so sánh các biểu thức, ta thực hiện các phép tính rồi so sánh. Lời giải chi tiết a) Ta có: \({\left( { - {\rm{ }}0,1} \right)^2}.{\left( { - {\rm{ }}0,1} \right)^4} = {\left( { - {\rm{ }}0,1} \right)^{2 + 4}} = {( - {\rm{ }}0,1)^6}\) ; \({\left[ {{{\left( { - {\rm{ }}0,1} \right)}^3}} \right]^2} = {\left( { - {\rm{ }}0,1} \right)^{3.2}} = {\left( { - {\rm{ }}0,1} \right)^6}\) Vậy \({\left( { - {\rm{ }}0,1} \right)^2}.{\left( { - {\rm{ }}0,1} \right)^4}\) = \({\left[ {{{\left( { - {\rm{ }}0,1} \right)}^3}} \right]^2}\). b) Ta có: \({\left( {\dfrac{1}{2}} \right)^8}:{\left( {\dfrac{1}{2}} \right)^2} = {\left( {\dfrac{1}{2}} \right)^{8 - 2}} = {\left( {\dfrac{1}{2}} \right)^6}\) ; \({\left( {\dfrac{1}{2}} \right)^3}.{\left( {\dfrac{1}{2}} \right)^3} = {\left( {\dfrac{1}{2}} \right)^{3 + 3}} = {\left( {\dfrac{1}{2}} \right)^6}\) Vậy \({\left( {\dfrac{1}{2}} \right)^8}:{\left( {\dfrac{1}{2}} \right)^2}\) = \({\left( {\dfrac{1}{2}} \right)^3}.{\left( {\dfrac{1}{2}} \right)^3}\). c) Ta có: \({9^8}:{27^3} = {\left( {{3^2}} \right)^8}:{\left( {{3^3}} \right)^3} =3^{2.8}:3^{3.3}= {3^{16}}:{3^9} = {3^{16 - 9}} = {3^7};\\ {3^2}{.3^5} = {3^{2 + 5}} = {3^7}\) Vậy \({9^8}:{27^3}={3^2}{.3^5}\). d) Ta có: \({\left( {\dfrac{1}{4}} \right)^7}.0,25 = {\left( {\dfrac{1}{4}} \right)^7}.\left( {\dfrac{1}{4}} \right) = {\left( {\dfrac{1}{4}} \right)^{7 + 1}} = {\left( {\dfrac{1}{4}} \right)^8}\) ; \({\left[ {{{\left( {\dfrac{1}{4}} \right)}^2}} \right]^4} = {\left( {\dfrac{1}{4}} \right)^{2.4}} = {\left( {\dfrac{1}{4}} \right)^8}\) Vậy \({\left( {\dfrac{1}{4}} \right)^7}.0,25\) = \({\left[ {{{\left( {\dfrac{1}{4}} \right)}^2}} \right]^4}\). e) Ta có: \({\left[ {{{\left( { - 0,7} \right)}^2}} \right]^3} = {\left[ {{{\left( {0,7} \right)}^2}} \right]^3} = {(0,7)^{2.3}} = {(0,7)^6}\) ; \({\left[ {{{\left( {0,7} \right)}^3}} \right]^2} = {(0,7)^{3.2}} = {(0,7)^6}\). Vậy \({\left[ {{{\left( { - 0,7} \right)}^2}} \right]^3}\) = \({\left[ {{{\left( {0,7} \right)}^3}} \right]^2}\).
Quảng cáo
|