Giải bài 2.39 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sốngCó bao nhiêu cấp số nhân có năm số hạng mà tổng của năm số hạng đó là 31 và tích của chúng là 1024. Quảng cáo
Đề bài Có bao nhiêu cấp số nhân có năm số hạng mà tổng của năm số hạng đó là 31 và tích của chúng là 1024. A. 1 B. 2 C. 3 D. 4. Phương pháp giải - Xem chi tiết Sử dụng công thức tính tổng của cấp số nhân \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\) và công thức số hạng tổng quát để tìm ra số hạng đầu tiên và công bội. Lời giải chi tiết Đáp án D. Cấp số nhân \({u_1} = {u_3}\frac{1}{{{q^2}}},\,\,{u_2} = {u_3}.\frac{1}{q},\,\,{u_3},\,{u_4} = \,{u_1}.q,\,\,{u_5} = {u_1}.{q^2}\) Tích của 5 số hạng này là: \(P = {u_3}\frac{1}{{{q^2}}}.{u_3}.\frac{1}{q}.{u_3}.{u_3}.q.{u_3}.{q^2} = u_3^5\). Suy ra \(1024 = u_3^5 \Rightarrow {u_3} = 4.\) (1). Tổng của cấp số nhân 5 số hạng này là : \(\begin{array}{l}{S_5} = \frac{{{u_3}\frac{1}{{{q^2}}}\left( {1 - {q^5}} \right)}}{{1 - q}} = \frac{{{u_3}\left( {1 - {q^5}} \right)}}{{{q^2}(1 - q)}} = \frac{{4.\left( {1 - {q^5}} \right)}}{{{q^2}(1 - q)}} \Rightarrow 31 = \frac{{4\left( {1 - {q^5}} \right)}}{{{q^2}(1 - q)}}\\ \Rightarrow 31.{q^2}(1 - q) = 4\left( {1 - {q^5}} \right)\\ \Rightarrow 31.{q^2}(1 - q) = 4(1 - q)(1 + q + {q^2} + {q^3} + {q^4})\\ \Rightarrow (1 - q)(4{q^4} + 4{q^3} - 27{q^2} + 4q + 4) = 0\\ \Rightarrow (1 - q)\left( {\frac{4}{{{q^2}}} + \frac{4}{q} - 27 + 4q + 4{q^2}} \right) = 0\\ \Rightarrow (1 - q)\left( {\frac{4}{{{q^2}}} + 8 + 4{q^2} + \frac{4}{q} + 4q - 35} \right) = 0\\ \Rightarrow (1 - q)\left( {{{\left( {\frac{2}{q} + 2q} \right)}^2} + 2\left( {\frac{2}{q} + 2q} \right) - 35} \right) = 0\\ \Rightarrow \left[ \begin{array}{l}q = 1\\\frac{2}{q} + 2q = - 7\\\frac{2}{q} + 2q = 5\end{array} \right. \Rightarrow \left[ \begin{array}{l}q = 1(L)\\2{q^2} + 7q + 2 = 0\\2{q^2} - 5q + 2 = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}q = \frac{{\sqrt {33} - 7}}{4}\\q = \frac{{ - \sqrt {33} - 7}}{4}\\q = \frac{1}{2}\\q = 2\end{array} \right.\end{array}\). Vậy có 4 nghiệm q thỏa mãn. Vậy có 4 cấp số cộng thỏa mãn yêu cầu đề bài.
Quảng cáo
|