Giải bài 22 trang 41 sách bài tập toán 8 - Cánh diềuThương của phép chia phân thức \(\frac{{{y^3} - {x^3}}}{{6{x^3}y}}\) cho phân thức \(\frac{{{x^2} + xy + {y^2}}}{{2xy}}\) là: Quảng cáo
Đề bài Thương của phép chia phân thức \(\frac{{{y^3} - {x^3}}}{{6{x^3}y}}\) cho phân thức \(\frac{{{x^2} + xy + {y^2}}}{{2xy}}\) là: Phương pháp giải - Xem chi tiết Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\) khá 0, ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\): \(\frac{A}{B}:\frac{C}{D} = \frac{A}{B}.\frac{D}{C}\) với \(\frac{C}{D}\) khác 0 Lời giải chi tiết Thực hiện phép chia ta có: \(\frac{{{y^3} - {x^3}}}{{6{x^3}y}}:\frac{{{x^2} + xy + {y^2}}}{{2xy}} = \frac{{\left( {y - x} \right)\left( {{y^2} + xy + {x^2}} \right)}}{{2xy.3{x^2}}}.\frac{{2xy}}{{{x^2} + xy + {y^2}}} = \frac{{y - x}}{{3{x^2}}}\) → Đáp án D.
Quảng cáo
|