Giải bài 2.19 trang 26 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Miền nghiệm của hệ bất phương trình

Quảng cáo

Đề bài

Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y \le 1}\\{ - 3 \le y \le 3}\\{ - 3 \le x \le 3}\end{array}} \right.\) là:

A. Miền lục giác.

B. Miền tam giác.

C. Miền tứ giác.

D. Miền ngũ giác.

Phương pháp giải - Xem chi tiết

- Vẽ các bất phương trình trên cùng một mặt phẳng tọa độ \(Oxy.\)

- Xác định miền nghiệm của hệ bất phương trình đã cho.

Lời giải chi tiết

Miền nghiệm của bất phương trình \(x + y \le 1\) là nửa đường thẳng \(d:x + y = 1\) chứa gốc tọa độ \(O\left( {0;0} \right).\)

Miền nghiệm của bất phương trình \( - 3 \le y \le 3\) là miền nằm giữa hai đường thẳng \({d_1}:y =  - 3\) và \({d_2}:y = 3\) chứa gốc tọa độ \(O\left( {0;0} \right).\)

Miền nghiệm của bất phương trình \( - 3 \le x \le 3\) là miền nằm giữa hai đường thẳng \({d_3}:x =  - 3\) và \({d_4}:x = 3\) chứa gốc tọa độ \(O\left( {0;0} \right).\)

Miền nghiệm của hệ bất phương trình trên là ngũ giác \(ABCDE.\)

Chọn D.

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close