Bài 2.11 trang 48 SBT hình học 12

Giải bài 2.11 trang 48 sách bài tập hình học 12. Một hình trụ có bán kính đáy bằng 50 cm và có chiều cao h = 50 cm.

Quảng cáo

Đề bài

Một hình trụ có bán kính đáy bằng 50 cm và có chiều cao h = 50 cm.

a) Tính diện tích xung quanh của hình trụ và thể tích của khối trụ được tạo nên.

b) Một đoạn thẳng có chiều dài 100 cm và có hai đầu mút nằm trên hai đường tròn đáy. Tính khoảng cách từ đoạn thẳng đó đến trục hình trụ.

Phương pháp giải - Xem chi tiết

a) Diện tích xung quanh \({S_{xq}} = 2\pi Rh\).

b) Xác định đoạn vuông góc chung của đoạn thẳng đó với trục hình trụ và tính toán.

Lời giải chi tiết

a) Ta có công thức \({S_{xq}} = 2\pi rl\)   với r = 50 cm, l = 50 cm.

Do đó \({S_{xq}} = 2\pi .50.50 = \pi .5000(c{m^2})\) và \(V = \pi {r^2}h = 125000.\pi (c{m^3})\)

b) Giả sử đoạn thẳng AB có điểm mút A nằm trên đường tròn đáy tâm O’ .

Theo giả thiết ta có: AB = 100 cm. Giả sử IK là đoạn vuông góc chung của trục OO’ và đoạn AB với I thuộc OO’ và K thuộc AB.

Chiếu vuông góc đoạn  AB xuống mặt phẳng đáy chứa đường tròn tâm O’ , ta có A’ , H , B lần lượt là hình chiếu  của A, K, B.

Vì  \(KI \bot OO'\)  nên IK // mp(O’BA’) , do đó  O’H // IK  và O’H = IK.

Ta suy ra  \(O'H \bot AB\)  và \(O'H \bot AA'\) . Vậy \(O'H \bot A'B\)

Xét tam giác vuông AA’B  ta có  \(A'B = \sqrt {A{B^2} - AA{'^2}}  = \sqrt {{{100}^2} - {{50}^2}}  = 50\sqrt 3 \)

Vậy \(IK = O'H = \sqrt {O'{A^2} - A'{H^2}}\)

\( = \sqrt {{{50}^2} - {{({{50\sqrt 3 } \over 2})}^2}}  = 50\sqrt {1 - {3 \over 4}}  = 25(cm)\)

Loigiaihay.com

  • Bài 2.12 trang 48 SBT hình học 12

    Giải bài 2.12 trang 48 sách bài tập hình học 12. Tính diện tích xung quanh của hình trụ có đường tròn đáy là đường tròn nội tiếp tam giác đáy của hình chóp và có chiều cao bằng chiều cao của hình chóp. Các mặt bên SAB, SBC , SCA cắt hình trụ theo những giao tuyến như thế nào?

  • Bài 2.10 trang 48 SBT hình học 12

    Giải bài 2.10 trang 48 sách bài tập hình học 12. Một hình trụ có các đáy là hai hình tròn tâm O và O’ bán kính r và có đường cao. Gọi A là một điểm trên đường tròn tâm O và B là một điểm trên đường tròn tâm O’ sao cho OA vuông góc với O’B...

  • Bài 2.9 trang 47 SBT hình học 12

    Giải bài 2.9 trang 47 sách bài tập hình học 12. Một khối trụ có bán kính đáy bằng r và chiều cao bằng...

  • Bài 2.8 trang 47 SBT hình học 12

    Giải bài 2.8 trang 47 sách bài tập hình học 12. Cho mặt trụ xoay và một điểm S cố định nằm ngoài. Một đường thẳng d thay đổi luôn luôn đi qua S cắt tại A và B. Chứng minh rằng trung điểm I của đoạn thẳng AB luôn luôn nằm trên một mặt trụ xác định.

  • Bài 2.7 trang 47 SBT hình học 12

    Giải bài 2.7 trang 47 sách bài tạp hình học 12. Cho mặt phẳng (P). Gọi A là một điểm nằm trên (P) và B là một điểm nằm ngoài (P) sao cho hình chiếu H của B trên (P) không trùng với A.

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close