Giải bài 12 trang 47 sách bài tập toán 8 – Cánh diều

Hai xe đi từ \(A\) đến \(B\): tốc độ trung bình của xe thứ nhất là 40 km/h, tốc độ trung bình của xe thứ hai là 25 km/h. Để đi hết quãng đường \(AB\), xe thứ nhất cần ít thời gian hơn xe thứ hai là 1 giờ 30 phút. Tính chiều dài quãng đường \(AB\)

Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên

Quảng cáo

Đề bài

Hai xe đi từ \(A\) đến \(B\): tốc độ trung bình của xe thứ nhất là 40 km/h, tốc độ trung bình của xe thứ hai là 25 km/h. Để đi hết quãng đường \(AB\), xe thứ nhất cần ít thời gian hơn xe thứ hai là 1 giờ 30 phút. Tính chiều dài quãng đường \(AB\)

Phương pháp giải - Xem chi tiết

Các bước giải bài toán bằng cách lập phương trình

Bước 1: Lập phương trình

-         Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số

-         Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết

-         Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2: Giải phương trình

Bước 3: Kết luận

-         Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn, nghiệm nào không thỏa mãn điều kiện của ẩn

-         Đưa ra câu trả lời cho bài toán.

Lời giải chi tiết

Đổi 1 giờ 30 phút = 1,5 giờ. Gọi chiều dài quãng đường \(AB\) là \(x\) (km), \(x > 0\). Thời gian xe thứ nhất đi hết quãng đường \(AB\) là \(\frac{x}{{40}}\) (giờ). Thời gian xe thứ hai đi hết quãng đường \(AB\) là \(\frac{x}{{25}}\) (giờ). Ta có phương trình: \(\frac{x}{{25}} - \frac{x}{{40}} = 1,5\). Giải phương trình ta tìm được \(x = 100\) (thỏa mãn điều kiện). Vậy chiều dài quãng đường \(AB\) là 100 km.

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close