Bài 1.15 trang 19 SBT hình học 12

Giải bài 1.15 trang 19 sách bài tập hình học 12. Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a, BC = b, AA’ = c. Gọi M và N theo thứ tự là trung điểm của A’B’ và B’C’. Tính tỉ số giữa thể tích khối chóp D’.DMN và thể tích khối hộp chữ nhật ABCD.A’B’C’D’

Quảng cáo

Đề bài

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a,BC = b,AA' = c\). Gọi \(M\) và \(N\) theo thứ tự là trung điểm của \(A'B'\) và \(B'C'\). Tính tỉ số giữa thể tích khối chóp \(D'.DMN\) và thể tích khối hộp chữ nhật \(ABCD.A'B'C'D'\).

Phương pháp giải - Xem chi tiết

- Đổi vị trí đỉnh và đáy của khối chóp, đưa về khối chóp có chiều cao và đáy dễ tính toán.

- Tính thể tích khối chóp theo công thức \(V = \dfrac{1}{3}Sh\).

- Tính thể tích khối hộp chữ nhật. Từ đó suy ra tỉ số.

Lời giải chi tiết

Thể tích khối chóp \(D'.DMN\) bằng thể tích khối chóp \(D.D'MN\)

Ta có:

\(\begin{array}{l}
{S_{A'B'C'D'}} = A'B'.B'C'={ab}\\
{S_{D'A'M}} = \frac{1}{2}A'D.A'M = \frac{1}{2}.b.\frac{a}{2} = \frac{{ab}}{4}\\
{S_{B'MN}} = \frac{1}{2}B'M.B'N = \frac{1}{2}.\frac{a}{2}.\frac{b}{2} = \frac{{ab}}{8}\\
{S_{D'C'N}} = \frac{1}{2}C'D'.C'N = \frac{1}{2}.a.\frac{b}{2} = \frac{{ab}}{4}
\end{array}\)

\({S_{D'MN}} = {S_{A'B'C'D'}} - \left( {{S_{D'A'M}} + {S_{B'MN}} + {S_{D'C'N}}} \right)\)\( = ab - \left( {\dfrac{{ab}}{4} + \dfrac{{ab}}{8} + \dfrac{{ab}}{4}} \right) = \dfrac{{3ab}}{8}\)

Thể tích khối chóp \({V_{D'.DMN}}  = \frac{1}{3}{S_{D'MN}}.DD'\) \(= \dfrac{1}{3}.\dfrac{{3ab}}{8}.c = \dfrac{{abc}}{8}\).

Lại có \({V_{ABCD.A'B'C'D'}} = abc\) \( \Rightarrow \dfrac{{{V_{D'.DMN}}}}{{{V_{ABCD.A'B'C'D'}}}} = \dfrac{1}{8}\).

Loigiaihay.com

  • Bài 1.16 trang 19 SBT hình học 12

    Giải bài 1.16 trang 19 sách bài tập hình học 12. Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a, BC = b, AA’ = c. Gọi E và F lần lượt là những điểm thuộc cạnh BB’ và DD’ sao cho.

  • Bài 1.17 trang 19 SBT hình học 12

    Giải bài 1.17 trang 19 sách bài tập hình học 12. Cho hình hộp ABCD.A’B’C’D’. Gọi E và F lần lượt là trung điểm của B’C’ và C’D’.

  • Bài 1.14 trang 18 SBT hình học 12

    Giải bài 1.14 trang 18 sách bài tập hình học 12. Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a, BC = 2a, AA’ = a. Lấy điểm M trên cạnh AD sao cho AM = 3MD.

  • Bài 1.13 trang 18 SBT hình học 12

    Giải bài 1.13 trang 18 sách bài tập hình học 12. Chứng minh rằng tổng các khoảng cách từ một điểm bất kì trong một tứ diện đều đến các mặt phẳng của nó là một số không đổi.

  • Bài 1.12 trang 18 SBT hình học 12

    Giải bài 1.12 trang 18 sách bài tập hình học 12. Cho hình chóp tam giác S.ABC có đáy là tam giác vuông ở B. Cạnh SA vuông góc với đáy. Từ A kẻ các đoạn thẳng AD vuông góc với SB và AE vuông góc với SC. Biết rằng AB = a, BC = b, SA = c.

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close