Giải bài 1.12 trang 11 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Chứng minh đẳng thức sau

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Chứng minh đẳng thức sau

\({\sin ^4}a + {\cos ^4}a = 1 - \frac{1}{2}{\sin ^2}2a = \frac{3}{4} + \frac{1}{4}\cos 4a\).

Phương pháp giải - Xem chi tiết

Tách vế trái thành hằng đẳng thức, áp dụng công thức góc nhân đôi và công thức hạ bậc để biến đổi thành vế còn lại.

\(\sin 2x = 2\sin x\cos x\)

\({\sin ^2}x = \frac{{1 - \cos 2x}}{2}\).

Lời giải chi tiết

\(\begin{array}{l}{\sin ^4}a + {\cos ^4}a = {\sin ^4}a + 2{\sin ^2}a{\cos ^2}a + {\cos ^4}a - 2{\sin ^2}a{\cos ^2}a\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = ({\sin ^4}a + 2{\sin ^2}a{\cos ^2}a + {\cos ^4}a) - \frac{1}{2}.4{\sin ^2}a{\cos ^2}a\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\left( {{{\sin }^2}a + {{\cos }^2}a} \right)^2} - \frac{1}{2}{(2{\mathop{\rm sinacosa}\nolimits} )^2}\,\,\,\,\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 1 - \frac{1}{2}{\sin ^2}2a\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 1 - \frac{1}{2}\left( {\frac{{1 - \cos 4a}}{2}} \right) = 1 - \frac{{1 - \cos 4a}}{4}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{3}{4} + \frac{1}{4}\cos 4a.\end{array}\)

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close