Giải bài 11 trang 62 sách bài tập toán 8 – Cánh diều

Ở một nhà máy, người ta dùng một băng chuyền để chuyển nguyên vật liệu. Ba vòng quay \(A,B,C\) của băng chuyền đặt cách mặt đất ở các độ cao lần lượt là \(AH = 5\) (m), \(CI = 8\) (m), \(BK = x\) (m) (Hình 16).

Quảng cáo

Đề bài

Ở một nhà máy, người ta dùng một băng chuyền để chuyển nguyên vật liệu. Ba vòng quay \(A,B,C\) của băng chuyền đặt cách mặt đất ở các độ cao lần lượt là \(AH = 5\) (m), \(CI = 8\) (m), \(BK = x\) (m) (Hình 16).

Tính \(x\), biết \(AC = \frac{2}{5}CB\)

Phương pháp giải - Xem chi tiết

Áp dụng định lí Thales: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.

Lời giải chi tiết

Do \(AC = \frac{2}{5}CB\) nên \(AC = \frac{2}{7}AB\). Gọi \(N\) là giao điểm của \(AK\) và \(CI\). Do \(CN//BK\) nên theo hệ quả của định lí Thales, ta có: \(\frac{{AC}}{{AB}} = \frac{{CN}}{{BK}}\) hay \(\frac{{CN}}{x} = \frac{2}{7}\). Suy ra \(CN = \frac{2}{7}x\) (1). Tương tự, do \(IN//AH,CN//BK\) nên \(\frac{{IN}}{{AH}} = \frac{{IK}}{{KH}} = \frac{{BK}}{{KA}} = \frac{{CB}}{{BA}} = \frac{5}{7}\) hay \(\frac{{IN}}{5} = \frac{5}{7}\). Suy ra \(IN = 5.\frac{5}{7} = \frac{{25}}{7}\) (m) (2).

Từ (1) và (2) ta có: \(CI = CN + IN = \frac{2}{7}x + \frac{{25}}{7}\).

Lại có \(CI = 8\) (m) nên \(\frac{2}{7}x + \frac{{25}}{7} = 8\). Vậy \(x = 15,5\).

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close