Bài 100 trang 68 Vở bài tập toán 6 tập 1Giải bài 100 trang 68 VBT toán 6 tập 1. Một số cuốn sách nếu xếp thành từng bó 10 quyển, 12 quyển hoặc 15 quyển đều vừa đủ bó... Quảng cáo
Đề bài Một số cuốn sách nếu xếp thành từng bó \(10\) quyển, \(12\) quyển hoặc \(15\) quyển đều vừa đủ bó. Tính số sách đó biết rằng số sách trong khoảng từ \(100\) đến \(150.\) Phương pháp giải - Xem chi tiết Bài toán chính là ta cần tìm bội chung của các số \(10,12,15\) sao cho bội chung đó phải nằm trong khoảng từ \(100\) đến \(150\). Lời giải chi tiết Gọi số sách phải tìm là \(a\;(a\in\mathbb N^*)\). Ta có \(a\, \vdots \,10,\,a\, \vdots \,12,\,a\, \vdots \,15\) nên \(a\in BC(10,12,15)\). Mặt khác \(100\le a\le 150\). Phân tích \(10,12,15\) ra thừa số nguyên tố: \(10= 2.5\) \(12=2^2.3\) \(15=3.5\) \(BCNN(10,12,15) = 2^2.3.5 = 60\). \(BC(10,12,15)=\{0;60;120;180;240; ...\}\). Do \(100\le a\le 150\) nên \(a=120\). Vậy số sách phải tìm là \(120\) quyển. Loigiaihay.com
Quảng cáo
|