Giải bài 1 trang 77 sách bài tập toán 10 - Chân trời sáng tạoGóc giữa hai vectơ Quảng cáo
Đề bài Cho hai vectơ \(\overrightarrow a = \left( {4;3} \right)\) và \(\overrightarrow b = \left( {1;7} \right)\). Góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) là: A. \({90^ \circ }\) B. \({60^ \circ }\) C. \({45^ \circ }\) D. \({30^ \circ }\) Phương pháp giải - Xem chi tiết \(\left( {a;b} \right)\) và \(\left( {c;d} \right)\) là hai vectơ. Góc giữa hai vectơ này được tính qua công thức: \(cos\varphi = \frac{{ac + bd}}{{\sqrt {{a^2} + {b^2}} \sqrt {{c^2} + {d^2}} }}\) Lời giải chi tiết Ta có: \(cos\varphi = \frac{{4.1 + 3.7}}{{\sqrt {{4^2} + {3^2}} \sqrt {{1^2} + {7^2}} }} = \frac{1}{{\sqrt 2 }} \Rightarrow \varphi = {45^ \circ }\) Chọn C.
Quảng cáo
|