Đề kiểm tra 15 phút - Đề số 5 - Bài 2 - Chương 3 - Đại số 9

Giải Đề kiểm tra 15 phút - Đề số 5 - Bài 2 - Chương 3 - Đại số 9

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1: Tìm a, b để hệ : \(\left\{ \matrix{  ax + y = 1 \hfill \cr  bx + ay =  - 5 \hfill \cr}  \right.\) có nghiệm \(( 1; − 1).\)

Bài 2: Đoán nhận số nghiêm của phương trình sau, giải trình vì sao ?

\(\left\{ \matrix{  2x - 2y = 4 \hfill \cr   - x + y =  - {1 \over 2} \hfill \cr}  \right.\)

Bài 3: Tìm a, b, c biết rằng hệ phương trình : \(\left\{ \matrix{  ax - 2y = 4 \hfill \cr  bx + y = c \hfill \cr}  \right.\) có hai nghiệm \(( 4; 0)\) và \((− 2; − 3).\)

LG bài 1

Lời giải chi tiết:

Bài 1: Thế \(x = 1; y = − 1\) vào hệ, ta được: \(\left\{ \matrix{  a - 1 = 1 \hfill \cr  b - a =  - 5 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  a = 2 \hfill \cr  b =  - 3. \hfill \cr}  \right.\)

LG bài 2

Lời giải chi tiết:

Bài 2: Viết lại hệ : \(\left\{ \matrix{  x - y = 2 \hfill \cr   - x + y =  - {1 \over 2} \hfill \cr}  \right. \)\(\Leftrightarrow \left\{ \matrix{  y = x - 2\,\,\,\,\,\,\,\,\left( {{d_1}} \right) \hfill \cr  y = x - {1 \over 2}\,\,\,\,\,\,\,\left( {{d_2}} \right) \hfill \cr}  \right.\)

Hai đường thẳng (d1) và (d2) song song. Vậy hệ vô nghiệm.

LG bài 3

Lời giải chi tiết:

Bài  3: Thế \(x = 4; y = 0\) vào phương trình thứ nhất, ta có : \(4a = 4 \Leftrightarrow  a = 1.\)

Thế \(x = 4; y = 0\) vào phương trình thứ hai ta có : \(4b = c\)           (1)

Thế \(x = − 2; y = − 3\) vào phương trình thứ hai ta có : \(− 2b – 3 = c \)          (2)

Từ (1) và (2) =>\(4b =  - 2b - 3\,\,\,\left( { = c} \right) \Rightarrow b =  - {1 \over 2}\)

Từ đó, tìm được : \(c = − 2.\)

Đáp số :  \(a = 1\);    \(b =  - {1 \over 2}\) ; \(c = − 2.\)

Cách giải khác : Hệ có hai nghiệm phân biệt nên hệ sẽ có vô số nghiệm vì qua hai điểm phân biệt chỉ có một đường thẳng hay nói cách khác hai đường thẳng biểu diễn bởi mỗi phương trình là trùng nhau. Từ đó, tìm được b; c sau khi đã có \(a = 1\).

 Loigiaihay.com

 

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close