Đề kiểm tra 15 phút - Đề số 4 - Bài 3 - Chương 4 - Đại số 9

Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 3 - Chương 4 - Đại số 9

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1: Tìm m để phương trình sau vô nghiệm : \({x^2} + 2x - m = 0.\)

Bài 2: Giải phương trình : \({x^2} - 5x - 6 = 0.\)

Bài 3: Tìm p, q để hai phương trình sau tương đương:

\({x^2} - 4 = 0\) và \({x^2} + px + q = 0.\)

LG bài 1

Phương pháp giải:

Biến đổi vế trái là hằng đẳng thức \({\left( {a + b} \right)^2}\), vế phải là biểu thức chứa m

=> Phương trình vô nghiệm khi vế trái âm

Lời giải chi tiết:

Bài 1: Ta có : \({x^2} + 2x - m = 0\)

\(\Leftrightarrow {x^2} + 2x + 1 - 1 - m = 0\)

\( \Leftrightarrow {\left( {x + 1} \right)^2} = m + 1\)

Phương trình vô nghiệm \( \Leftrightarrow m + 1 < 0 \Leftrightarrow m <  - 1.\)

Nhận xét : Nếu \(m + 1 ≥ − 1\), phương trình có nghiệm.

LG bài 2

Phương pháp giải:

Đưa về phương trình tích

Lời giải chi tiết:

Bài 2:\(\begin{array}{l}{x^2} - 5x - 6 = 0\\ \Leftrightarrow {x^2} - 6x + x - 6 = 0\\ \Leftrightarrow x\left( {x - 6} \right) + \left( {x - 6} \right) = 0\\ \Leftrightarrow \left( {x - 6} \right)\left( {x + 1} \right) = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x - 6 = 0}\\{x + 1 = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 6}\\{x = -1}\end{array}} \right.} \right.\end{array}\) 

Vậy \(x \in {\rm{\{ }} - 1;6\} \)

LG bài 3

Phương pháp giải:

Hai phương trình tương đương là hai phương trình có cùng tập nghiệm

Giải phương trình thứ nhất tìm được 2 nghiệm, thế vào phương trình thứ hai và giải hệ ta tìm được p,q

Lời giải chi tiết:

Bài 3: Ta có : \({x^2} - 4 = 0 \Leftrightarrow x =  \pm 2\)

Nếu \(x =  \pm 2\) là nghiệm của phương trình \({x^2} + px + q = 0\left( * \right)\), ta có hệ :

\(\left\{ \matrix{  4 + 2p + q = 0 \hfill \cr  4 - 2p + q = 0 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  p = 0 \hfill \cr  q =  - 4 \hfill \cr}  \right.\)

Vậy phương trình (*) trở thành \({x^2} - 4 = 0\)( đó chính là phương trình thứ nhất và hiển nhiên có hai nghiệm \(x =  \pm 2).\)

Vậy \(p=0; q=-4\)

 Loigiaihay.com

 

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close