Đề kiểm tra 15 phút - Đề số 2 - Chương 4 - Đại số và Giải tích 11Đáp án và lời giải chi tiết Đề kiểm tra 15 phút - Đề số 2 - Chương 4 - Đại số và Giải tích 11 Quảng cáo
Đề bài Câu 1: Giá trị của \(\lim \dfrac{1}{{{n^k}}}\,(k \in {\mathbb{N}^*})\)bằng A.0 B. 2 C. 4 D. 5 Câu 2: Giá trị đúng của \(\lim ({3^n} - {5^n})\) là: A. \( + \infty \) B. \( - \infty \) C. 2 D. -2 Câu 3: Giá trị của \(\lim \dfrac{{{{\sin }^2}n}}{{n + 2}}\)bằng A.0 B. 3 C. 5 D. 8 Câu 4: Tính giới hạn của dãy số \({u_n} = q + 2{q^2} + ... + n{q^n};\,\,\left| q \right| < 1\) A. \( + \infty \) B. \( - \infty \) C. \(\dfrac{q}{{{{(1 - q)}^2}}}\) D. \(\dfrac{q}{{{{(1 + q)}^2}}}\) Câu 5: Giá trị của \(\lim (2n + 1)\)bằng A. \( + \infty \) B. \( - \infty \) C. 0 D. 1 Câu 6: Tính \(\lim (\sqrt {4{n^2} + n + 1} - 2n)\) A. \( + \infty \) B. \( - \infty \) C. 3 D. \(\dfrac{1}{4}\) Câu 7: Giá trị của \(A = \lim \dfrac{{n - 2\sqrt n }}{{2n}}\) bằng A. \( + \infty \) B. \( - \infty \) C. \(\dfrac{1}{2}\) D. 1 Câu 8: Giá trị của \(A = \lim \dfrac{{{{(2{n^2} + 1)}^4}{{(n + 2)}^9}}}{{{n^{17}} + 1}}\) bằng A. \( + \infty \) B. \( - \infty \) C. 16 D. 1 Câu 9: Tính giới hạn của dãy số \({u_n} = \dfrac{{(n + 1)\sqrt {{1^3} + {2^3} + ... + {n^3}} }}{{3{n^3} + n + 2}}\) A. \( + \infty \) B. \( - \infty \) C. \(\dfrac{1}{9}\) D. 1 Câu 10: Tính giới hạn: \(\lim \left[ {\dfrac{1}{{1.3}} + \dfrac{1}{{2.4}} + ... + \dfrac{1}{{n(n + 2)}}} \right]\) A.1 B.0 C. \(\dfrac{2}{3}\) D. \(\dfrac{3}{4}\) Lời giải chi tiết
Câu 1: Đáp án A \(\lim \dfrac{1}{{{n^k}}} = \lim \left( {\dfrac{1}{n}.\dfrac{1}{{{n^{k - 1}}}}} \right) = 0\,(k \in {\mathbb{N}^*})\) Câu 2: Đáp án B \(\lim ({3^n} - {5^n}) = \lim {5^n}\left( {{{\left( {\dfrac{3}{5}} \right)}^n} - 1} \right) = - \infty \) Vì \(\lim {5^n} = + \infty \) \(\lim \left( {{{\left( {\dfrac{3}{5}} \right)}^n} - 1} \right) = - 1\) Câu 3: Đáp án A \(\begin{array}{l}\lim \dfrac{{{{\sin }^2}n}}{{n + 2}}\\ - 1 \le {\sin ^2}n \le 1 \Rightarrow \dfrac{{ - 1}}{{n + 2}} \le {\sin ^2}n \le \dfrac{1}{{n + 2}}\\\lim \dfrac{{ - 1}}{{n + 2}} = \lim \dfrac{{n\left( { - \dfrac{1}{n}} \right)}}{{n\left( {1 + \dfrac{2}{n}} \right)}} = \lim \dfrac{{\left( { - \dfrac{1}{n}} \right)}}{{\left( {1 + \dfrac{2}{n}} \right)}} = 0\\\lim \dfrac{1}{{n + 2}} = 0\end{array}\)\( \Rightarrow \lim \dfrac{{{{\sin }^2}n}}{{n + 2}} = 0\) Câu 4: Đáp án C Ta có \(\begin{array}{l}{u_n} - q{u_n} = q + {q^2} + {q^3} + ... + {q^n} - n{q^{n + 1}}\\\left( {1 - q} \right){u_n} = q\dfrac{{1 - {q^n}}}{{1 - q}} - n{q^{n + 1}}\\ \Rightarrow \lim {u_n} = \dfrac{q}{{{{\left( {1 - q} \right)}^2}}}\end{array}\) Câu 5: Đáp án A \(\lim (2n + 1) = \lim n(2 + \dfrac{1}{n}) = + \infty \) Câu 6: Đáp án D \(\begin{array}{l}\lim (\sqrt {4{n^2} + n + 1} - 2n)\\ = \lim \dfrac{{n + 1}}{{\sqrt {4{n^2} + n + 1} + 2n}}\\ = \lim \dfrac{{n\left( {1 + \dfrac{1}{n}} \right)}}{{n\left( {\sqrt {4 + \dfrac{1}{n} + \dfrac{1}{{{n^2}}}} + 2} \right)}}\\ = \lim \dfrac{{\left( {1 + \dfrac{1}{n}} \right)}}{{\left( {\sqrt {4 + \dfrac{1}{n} + \dfrac{1}{{{n^2}}}} + 2} \right)}} = \dfrac{1}{4}\end{array}\) Câu 7: Đáp án C \(\begin{array}{l}A = \lim \dfrac{{n - 2\sqrt n }}{{2n}} = \lim \dfrac{{n\left( {1 - \dfrac{2}{{\sqrt n }}} \right)}}{{2n}}\\ = \lim \dfrac{{\left( {1 - \dfrac{2}{{\sqrt n }}} \right)}}{2} = \dfrac{1}{2}\end{array}\) Câu 8: Đáp án C \(\begin{array}{l}A = \lim \dfrac{{{n^8}{{(2 + \dfrac{1}{{{n^2}}})}^4}.{n^9}{{(1 + \dfrac{2}{n})}^9}}}{{{n^{17}}\left( {1 + \dfrac{1}{{{n^{17}}}}} \right)}}\\ = \lim \dfrac{{{{(2 + \dfrac{1}{{{n^2}}})}^4}{{(1 + \dfrac{2}{n})}^9}}}{{\left( {1 + \dfrac{1}{{{n^{17}}}}} \right)}} = 16\end{array}\) Câu 9: Đáp án C \(\begin{array}{l}{1^3} + {2^3} + ... + {n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2}\\{u_n} = \dfrac{{n\left( {n + 1} \right)^2}}{{2\left( {3{n^3} + n + 2} \right)}} \Rightarrow \lim {u_n} = \dfrac{1}{6}\end{array}\) Câu 10: Đáp án D Loigiaihay.com
Quảng cáo
|