Xét tính liên tục của các hàm số sau trên tập xác định của chúng: a) (fleft( x right) = frac{x}{{{x^2} + 5x + 6}}) b) (fleft( x right) = left{ {begin{array}{*{20}{c}}{1 + {x^2};,;x < 1}\{4 - x;;,;x ge 1}end{array}} right.)
Xem lời giảiTìm các giới hạn sau: a) (mathop {lim}limits_{n to + infty } frac{{{n^2} + n + 1}}{{2{n^2} + 1}}); b) (mathop {lim}limits_{n to + infty } left( {sqrt {{n^2} + 2n} - n} right))
Xem lời giảiCho hàm số (fleft( x right) = frac{{x + 1}}{{left| {x + 1} right|}}). Hàm só (fleft( x right)) liên tục trên A. (left( { - infty ;; + infty } right)) B. (left( { - infty ;; - 1} right]) C. (left( { - infty ;; - 1} right) cup left( { - 1;; + infty } right)) D. (left[ { - 1;; + infty } right))
Xem lời giảiTìm giá trị của tham số m đề hàm số (fleft( x right) = left{ {begin{array}{*{20}{c}}{sin x;,x ge 0}\{ - x + m;;,;x < 0}end{array}} right.) liên tục trên (mathbb{R})
Xem lời giảiTính các giới hạn sau: a) (mathop {{rm{lim}}}limits_{x to 0} frac{{{{left( {x + 2} right)}^2} - 4}}{x}); b) (mathop {{rm{lim}}}limits_{x to 0} ) (frac{{sqrt {{x^2} + 9} - 3}}{{{x^2}}})
Xem lời giảiCho hai dãy số không âm (left( {{u_n}} right)) và (left( {{v_n}} right)) với (mathop {lim}limits_{n to + infty } {u_n} = 2) và (mathop {lim}limits_{n to + infty } {v_n} = 3). Tìm các giới hạn sau: a) (mathop {lim}limits_{n to + infty } frac{{u_n^2}}{{{v_n} - {u_n}}};;) b) (mathop {lim}limits_{n to + infty } sqrt {{u_n} + 2{v_n}} )
Xem lời giảiCho hàm số . Hàm số (fleft( x right)) liên tục tại (x = 1) khi A. (a = 0) B. (a = 3) C. (a = - 1) D. (a = 1)
Xem lời giảiMột bảng giá cước taxi được cho như sau:a) Viết công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển b) Xét tính liên tục của hàm số ở câu a.
Xem lời giảiCho hàm số (hàm Heaviside, thường được dùng để mô tả việc chuyển trạng thái tắt/mở của dòng điện tại thười điểm t = 0). Tính (mathop {{rm{lim}}}limits_{t to {0^ + }} Hleft( t right)) và (mathop {{rm{lim}}}limits_{t to 0} ;Hleft( t right).)
Xem lời giảiTìm giới hạn của các dãy số cho bởi a) ({u_n} = frac{{{n^2} + 1}}{{2n - 1}}) b) ({v_n} = sqrt {2{n^2} + 1} - n)
Xem lời giải