Bài 5.14 trang 122 SGK Toán 11 tập 1 - Kết nối tri thứcCho (fleft( x right)) và (gleft( x right)) là các hàm số liên tục tại (x = 1). Biết (fleft( 1 right) = 2) và (mathop {{rm{lim}}}limits_{x to {1^ - }} left[ {2fleft( x right) - gleft( x right)} right] = 3). Tính (gleft( 1 right)). Quảng cáo
Đề bài Cho \(f\left( x \right)\) và \(g\left( x \right)\) là các hàm số liên tục tại \(x = 1\). Biết \(f\left( 1 \right) = 2\) và \(\mathop {{\rm{lim}}}\limits_{x \to {1}} \left[ {2f\left( x \right) - g\left( x \right)} \right] = 3\). Tính \(g\left( 1 \right)\). Video hướng dẫn giải Phương pháp giải - Xem chi tiết Giả sử hai hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) liên tục tại điểm \({x_0}\). Khi đó: a) Các hàm số \(y = f\left( x \right) + g\left( x \right),\;y = f\left( x \right) - g\left( x \right),\;y = f\left( x \right).g\left( x \right)\) liên tục tại \({x_0}\) b) Hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục tại \({x_0}\) nếu \(g\left( {{x_0}} \right) \ne 0\) Lời giải chi tiết Vì \(f\left( x \right)\) và \(g\left( x \right)\) liên tục tại \(x = 1\). Suy ra \(2f\left( 1 \right) - g\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \left[ {2f\left( x \right) - g\left( x \right)} \right] = 3\) Suy ra \(g\left( 1 \right) = 1\).
Quảng cáo
|