Cho hàm số \(y = \sin x\) với \(x \in \left[ { - 2\pi ;2\pi } \right]\). a) Vẽ đồ thị hàm số đã cho. b) Tìm các giá trị của \(x \in \left[ {\frac{{ - 5\pi }}{3};\frac{{7\pi }}{3}} \right]\) sao cho \(\sin \left( {\frac{\pi }{3} - x} \right) = - 1\).
Xem chi tiếtChứng minh các đẳng thức lượng giác sau: a) \(4\cos x\cos \left( {\frac{\pi }{3} - x} \right)\cos \left( {\frac{\pi }{3} + x} \right) = \cos 3x\);
Xem chi tiếtBiết \(\sin \alpha = \frac{3}{5}\) và \(\frac{\pi }{2} < \alpha < \pi \). Tính giá trị của các biểu thức sau:
Xem chi tiếtHãy tìm số đo \(\alpha \) của góc lượng giác (Om, On), với \( - \pi \le \alpha < \pi \), biết một góc lượng giác cùng tia đầu Om và tia cuối On có số đo là:
Xem chi tiếtGiải các phương trình lượng giác sau: a) \(\cos \left( {2x - \frac{\pi }{3}} \right) + \sin x \) \( = 0\); b) \({\cos ^2}\left( {x + \frac{\pi }{4}} \right) \) \( = \frac{{2 + \sqrt 3 }}{4}\); c) \(\cos \left( {3x + \frac{\pi }{6}} \right) + 2{\sin ^2}x \) \( = 1\)
Xem chi tiếtTìm các nghiệm của mỗi phương trình sau trong khoảng \(\left( { - \pi ;\pi } \right)\). a) \(\sin \left( {3x - \frac{\pi }{3}} \right) = 1\);
Xem chi tiếtCho hàm số \(y = \tan x\) với \(x \in \left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right) \cup \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\). a) Vẽ đồ thị của hàm số đã cho.
Xem chi tiếtChứng minh rằng giá trị của các biểu thức không phụ thuộc vào giá trị của x. a) \({\sin ^2}x + \cos \left( {\frac{\pi }{3} - x} \right)\cos \left( {\frac{\pi }{3} + x} \right)\);
Xem chi tiếtChứng minh các đẳng thức lượng giác sau: a) \({\sin ^4}x + {\cos ^4}x = 1 - 2{\sin ^2}x{\cos ^2}x\); b) \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\);
Xem chi tiếtCho một góc lượng giác có số đo là \({375^0}\): a) Tìm số lớn nhất trong các số đo của góc lượng giác cùng tia đầu, tia cuối với góc đó mà có số đo âm;
Xem chi tiết