Câu hỏi:
Cho hai biểu thức: \(A\, = \,\frac{{2\sqrt x - 4}}{{\sqrt x - 1}}\) và \(B\, = \,\frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{3}{{\sqrt x + 1}} - \frac{{6\sqrt x - 4}}{{x - 1}}\) với \(x \ge 0,\,\,x \ne 1.\)
1. Tính giá trị của A khi \(x = 4.\)
2. Rút gọn B.
3. So sánh A.B với 5.
2. \(\frac{{\sqrt x - 1}}{{\sqrt x + 1}}\)
3. A.B < 5
2. \(\frac{{\sqrt x + 1}}{{\sqrt x - 1}}\)
3. A.B < 5
2. \(\frac{{\sqrt x - 1}}{{\sqrt x + 1}}\)
3. A.B > 5
2. \(\frac{{\sqrt x + 1}}{{\sqrt x - 1}}\)
3. A.B > 5
Phương pháp giải:
+) Sử dụng hằng đẳng thức: \({a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\).
+) Để so sánh a và b ta xét hiệu \(a - b\) .
Lời giải chi tiết:
Cho hai biểu thức: \(A\, = \,\frac{{2\sqrt x - 4}}{{\sqrt x - 1}}\) và \(B\, = \,\frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{3}{{\sqrt x + 1}} - \frac{{6\sqrt x - 4}}{{x - 1}}\) với \(x \ge 0,\,\,x \ne 1.\)
1. Tính giá trị của A khi \(x = 4.\)
Khi \(x = 4\) thì \(A\, = \,\frac{{2\sqrt 4 - 4}}{{\sqrt 4 - 1}} = \frac{{2.2 - 4}}{{2 - 1}} = \frac{0}{1} = 0\)
2. Rút gọn B.
\(\begin{array}{l}B\, = \,\frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{3}{{\sqrt x + 1}} - \frac{{6\sqrt x - 4}}{{x - 1}} = \frac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} + \frac{{3\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}} - \frac{{6\sqrt x - 4}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\\,\,\,\, = \frac{{x + \sqrt x + 3\sqrt x - 3 - 6\sqrt x + 4}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} = \frac{{x - 2\sqrt x + 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\\,\,\,\, = \frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{x - 1}} = \frac{{\sqrt x - 1}}{{\sqrt x + 1}}.\end{array}\)
3. So sánh A.B với 5.
\(\begin{array}{l}A.B - 5 = \frac{{2\sqrt x - 4}}{{\sqrt x - 1}}.\frac{{\sqrt x - 1}}{{\sqrt x + 1}} - 5 = \frac{{2\sqrt x - 4}}{{\sqrt x + 1}} - 5\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{2\sqrt x - 4 - 5\sqrt x - 5}}{{\sqrt x + 1}} = \frac{{ - 3\sqrt x - 9}}{{\sqrt x + 1}}\end{array}\)
Có \(\sqrt x \ge 0\;\forall x \ge 0 \Rightarrow - 3\sqrt x \le 0\;\forall x \ge 0 \Rightarrow - 3\sqrt x - 9 < 0\;\forall x \ge 0\)
Mặt khác \(\sqrt x \ge 0\;\forall x \ge 0 \Rightarrow \sqrt x + 1 > 0\;\forall x \ge 0.\)
\( \Rightarrow A.B - 5 = \frac{{ - 3\sqrt x - 9}}{{\sqrt x + 1}} < 0\;\;\forall x \ge 0 \Rightarrow \,A.B < 5\)
Chọn A.